Script generated by TTT

Title: Nipkow: Info2 (14.11.2014)

Date: Fri Nov 14 07:30:01 GMT 2014

Duration: 87:02 min

Pages: 106

6.3 Combining the elements of a list: foldr

Example

$$sum [] = 0$$

$$sum (x:xs) = x + sum xs$$

📮 🖫 📟 🛈 ↔ 🎸 🕴 🤝 🜒 🖅 Fri 08:31 🔍 🔚

6.3 Combining the elements of a list: foldr

6.3 Combining the elements of a list: foldr

Example

sum [] = 0
sum (x:xs) = x + sum xs

$$sum [x_1, ..., x_n] = x_1 + ... + x_n + 0$$

6.3 Combining the elements of a list: foldr

Example

```
sum [] = 0

sum (x:xs) = x + sum xs

sum [x_1, ..., x_n] = x_1 + ... + x_n + 0

concat [] = []

concat (xs:xss) = xs ++ concat xss
```


6.3 Combining the elements of a list: foldr

Example

sum [] = 0
sum (x:xs) = x + sum xs

$$sum [x_1, ..., x_n] = x_1 + ... + x_n + 0$$

$$concat [] = []$$

$$concat (xs:xss) = xs ++ concat xss$$

$$concat [xs_1, ..., xs_n] = xs_1 ++ ... ++ xs_n ++ []$$

foldr

foldr
$$(\oplus)$$
 z $[x_1, \ldots, x_n] = x_1 \oplus \ldots \oplus x_n \oplus z$

foldr

foldr
$$(\oplus)$$
 z $[x_1, \ldots, x_n] = x_1 \oplus \ldots \oplus x_n \oplus z$

Defined in Prelude:

```
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs
```


foldr

```
foldr (\oplus) z [x_1, \ldots, x_n] = x_1 \oplus \ldots \oplus x_n \oplus z
```

Defined in Prelude:

```
foldr :: (a \rightarrow a \rightarrow a) \rightarrow a \rightarrow [a] \rightarrow a
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs
```

Applications:

```
sum xs = foldr (+) 0 xs
```

concat xss = foldr (++) [] xss

foldr

foldr
$$(\oplus)$$
 z $[x_1, \ldots, x_n] = x_1 \oplus \ldots \oplus x_n \oplus z$

Defined in Prelude:

```
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs
```

Applications:

```
sum xs = foldr (+) 0 xs
concat xss = foldr (++) [] xss
```

What is the most general type of foldr?

foldr

foldr
$$(\oplus)$$
 z $[x_1, \ldots, x_n] = x_1 \oplus \ldots \oplus x_n \oplus z$

Defined in Prelude:

foldr ::
$$(a \rightarrow a \rightarrow a) \rightarrow a \rightarrow [a] \rightarrow a$$

foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs

Applications:

What is the most general type of foldr?

foldr

```
foldr f a replaces
  (:) by f and
  [] by a
```


foldr

foldr

```
foldr (\oplus) z [x_1, ..., x_n] = x_1 \oplus ... \oplus x_n \oplus z

Defined in Prelude:

foldr :: (a \rightarrow a \rightarrow a) \rightarrow a \rightarrow [a] \rightarrow a

foldr f a [] = a

foldr f a (x:xs) = x 'f' foldr f a xs

Applications:

sum xs = foldr (+) 0 xs

Concat xss = foldr (++) [] xss

What is the most general type of foldr?
```

```
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs
```

```
foldr f a replaces
  (:) by f and
  [] by a
```


Evaluating foldr

Evaluating foldr

```
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs
```

```
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs
foldr (+) 0 [1, -2]
= foldr (+) 0 (1 : -2 : [])
```


Evaluating foldr

Evaluating foldr

```
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs

foldr (+) 0 [1, -2]
= foldr (+) 0 (1 : -2 : [])
= 1 + foldr (+) 0 (-2 : [])
```

```
foldr f a [] = a

foldr f a (x:xs) = x 'f' foldr f a xs

foldr (+) 0 [1, -2]

= foldr (+) 0 (1 : -2 : [])

= 1 + foldr (+) 0 (-2 : [])

= 1 + -2 + (foldr (+) 0 [])
```


Evaluating foldr

Evaluating foldr

```
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs
foldr (+) 0 [1, -2]
= foldr (+) 0 (1 : -2 : [])
= 1 + foldr (+) 0 (-2 : [])
= 1 + -2 + (foldr (+) 0 [])
= 1 + -2 + 0
```

```
foldr f a [] = a
foldr f a (x:xs) = x 'f' foldr f a xs

foldr (+) 0 [1, -2]

= foldr (+) 0 (1 : -2 : [])

= 1 + foldr (+) 0 (-2 : [])

= 1 + -2 + (foldr (+) 0 [])

= 1 + -2 + 0

= -1
```


More applications of foldr

More applications of foldr

product xs = foldr (*) 1 xs

```
product xs = foldr (*) 1 xs
and xs = foldr (&&) True xs
```


More applications of foldr

More applications of foldr

```
product xs = foldr (*) 1 xs

and xs = foldr (&&) True xs

or xs = foldr (||) False xs
```

product xs = foldr (*) 1 xs
and xs = foldr (&&) True xs
or xs = foldr (||) False xs
inSort xs = foldr ins [] xs

Quiz

Quiz

What is

foldr (:) ys xs

What is

Example: foldr (:) ys (1:2:3:[]) =

Quiz

Quiz

What is

foldr (:) ys xs

Example: foldr (:) ys (1:2:3:[]) = 1:2:3:ys

What is

Example: foldr (:)
$$ys (1:2:3:[]) = 1:2:3:ys$$

foldr (:)
$$ys xs = xs ++ ys$$

Proof by induction on xs (Exercise!)

• means you have understood the art of higher-order functions

- means you have understood the art of higher-order functions
- allows you to apply properties of foldr

Pefinining functions via foldr

- means you have understood the art of higher-order functions
- allows you to apply properties of foldr

Example

```
If f is associative and a 'f' x = x then
foldr f a (xs++ys) = foldr f a xs 'f' foldr f a ys.
```

Pefinining functions via foldr

- means you have understood the art of higher-order functions
- allows you to apply properties of foldr

Example

```
If f is associative and a 'f' x = x then
foldr f a (xs++ys) = foldr f a xs 'f' foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
= x 'f' foldr f a (xs++ys)
= x 'f' (foldr f a xs 'f' foldr f a ys) -- by IH
foldr f a (x:xs) 'f' foldr f a ys
= (x 'f' foldr f a xs) 'f' foldr f a ys
= x 'f' (foldr f a xs 'f' foldr f a ys) -- by assoc.

Therefore, if g xs = foldr f a xs,
then g (xs ++ ys) = g xs 'f' g ys.
```


6.4 Lambda expressions

Consider

```
squares xs = map sqr xs where <math>sqr x = x * x
```


6.4 Lambda expressions

Consider

```
squares xs = map sqr xs where <math>sqr x = x * x
```


- means you have understood the art of higher-order functions
- allows you to apply properties of foldr

Example

```
If f is associative and a 'f' x = x then
foldr f a (xs++ys) = foldr f a xs 'f' foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
= x 'f' foldr f a (xs++ys)
= x 'f' (foldr f a xs 'f' foldr f a ys) -- by IH
foldr f a (x:xs) 'f' foldr f a ys
= (x 'f' foldr f a xs) 'f' foldr f a ys
= x 'f' (foldr f a xs 'f' foldr f a ys) -- by assoc.

Therefore, if g xs = foldr f a xs,
then g (xs ++ ys) = g xs 'f' g ys.

Therefore sum (xs++ys) = sum xs + sum ys,
product (xs++ys) = product xs * product ys, ...
```


6.4 Lambda expressions

Consider

```
squares xs = map sqr xs where sqr x = x * x

Do we really need to define sqr explicitly? No!
```


6.4 Lambda expressions

Consider

squares xs = map sqr xs where sqr x = x * x

Do we really need to define sqr explicitly? No!

$$\xspace \xspace \xsp$$

is the anonymous function with

6.4 Lambda expressions

Consider

squares xs = map sqr xs where sqr x = x * x

Do we really need to define sqr explicitly? No!

$$\xspace \xspace \xsp$$

is the anonymous function with

formal parameter x and result x * x

6.4 Lambda expressions

Consider

squares xs = map sqr xs where <math>sqr x = x * x

Do we really need to define sqr explicitly? No!

is the anonymous function with

formal parameter x and result x * x $\,$

In mathematics: $x \mapsto x * x$

6.4 Lambda expressions

Consider

squares xs = map sqr xs where <math>sqr x = x * x

Do we really need to define sqr explicitly? No!

is the anonymous function with

formal parameter x and result x * x $\,$

In mathematics: $x \mapsto x * x$

Evaluation:

$$(\x -> x * x) 3 = 3 * 3 = 9$$

6.4 Lambda expressions

Consider

squares xs = map sqr xs where <math>sqr x = x * x

Do we really need to define sqr explicitly? No!

$$\xspace \xspace \xsp$$

is the anonymous function with

formal parameter x and result x * x

In mathematics: $x \mapsto x * x$

Evaluation:

$$(\x -> x * x) 3 = 3 * 3 = 9$$

Usage:

squares
$$xs = map(x \rightarrow x * x) xs$$

Terminology

$$(\x \rightarrow e_1) e_2$$

x: formal parameter

e₁: result

Terminology

$$(\x -> e_1) e_2$$

x: formal parameter

e₁: result

e₂: actual parameter

Why "lambda"?

The logician Alonzo Church invented lambda calculus in the 1930s

Terminology

$$(\x \rightarrow e_1) e_2$$

x: formal parameter

e₁: result

e2: actual parameter

Why "lambda"?

The logician Alonzo Church invented *lambda calculus* in the 1930s

Logicians write $\lambda x. e$ instead of $\x -> e$

Typing lambda expressions

Typing lambda expressions

Example

```
(\x -> x > 0) :: Int -> Bool
because x :: Int implies x > 0 :: Bool
```

Example

```
(\x -> x > 0) :: Int -> Bool
because x :: Int implies <math>x > 0 :: Bool
```

The general rule:

$$(\x -> e) :: T_1 -> T_2$$

Typing lambda expressions

Evaluating lambda expressions

Example

```
(\x -> x > 0) :: Int -> Bool because x :: Int implies x > 0 :: Bool
```

The general rule:

```
(\x \rightarrow e) :: T_1 \rightarrow T_2
if x :: T_1 implies e :: T_2
```

 $(\x -> body)$ arg = body with x replaced by arg

Evaluating lambda expressions

Evaluating lambda expressions

$$(\x -> body)$$
 arg = body with x replaced by arg

$$(\x -> body)$$
 arg = body with x replaced by arg

Example

$$(\xs -> xs ++ xs) [1] = [1] ++ [1]$$

Sections of infix operators

Sections of infix operators

$$(+ 1)$$
 means $(\x -> x + 1)$

(+ 1) means
$$(\x -> x + 1)$$

(2 *) means $(\x -> 2 * x)$

Sections of infix operators

Sections of infix operators

```
(+ 1) means (\x -> x + 1)
(2 *) means (\x -> 2 * x)
(2 ^) means (\x -> 2 ^ x)
```

(+ 1) means
$$(\x -> x + 1)$$

(2 *) means $(\x -> 2 * x)$
(2 ^) means $(\x -> 2 ^ x)$
(^ 2) means $(\x -> x ^ 2)$

Sections of infix operators

Sections of infix operators

(+ 1) means
$$(\x -> x + 1)$$

(2 *) means $(\x -> 2 * x)$
(2 ^) means $(\x -> 2 ^ x)$
(^ 2) means $(\x -> x ^ 2)$
etc
Example
squares xs = map (^ 2) xs

List comprehension

List comprehension

Just syntactic sugar for combinations of map

$$[fx|x \leftarrow xs] = map f xs$$

Just syntactic sugar for combinations of map [fx | x < -xs] = map f xs

$$[x \mid x \leftarrow xs, px]$$
 = filter p xs

List comprehension

List comprehension

Just syntactic sugar for combinations of map

Just syntactic sugar for combinations of ${\tt map}$

$$[fx|x<-xs] = map f xs$$

filter

$$[x \mid x \leftarrow xs, px]$$
 = filter p xs

and concat

$$[f x y | x \leftarrow xs, y \leftarrow ys] =$$
concat (map () xs)

List comprehension

Just syntactic sugar for combinations of map

$$[fx | x < -xs] = map f xs$$

filter

$$[x | x \leftarrow xs, px] = filter pxs$$

and concat

$$[f x y | x <- xs, y <- ys] =$$
 concat $(map (\x -> map (\y ->) ys) xs)$

List comprehension

Just syntactic sugar for combinations of map

$$[fx | x < -xs] = map f xs$$

filter

$$[x \mid x \leftarrow xs, px]$$
 = filter p xs

and concat

$$[f x y | x \leftarrow xs, y \leftarrow ys] =$$
concat (map (\x -> map (\y -> f x y) ys) xs)

6.5 Extensionality

Two functions are equal if for all arguments they yield the same result

6.5 Extensionality

Two functions are equal if for all arguments they yield the same result

$$f,g::T_1 \rightarrow T:$$

$$\frac{\forall a. \ f \ a = g \ a}{f = g}$$

6.5 Extensionality

Two functions are equal if for all arguments they yield the same result

$$f,g::T_1 \rightarrow T:$$

$$\frac{\forall a. \ f \ a = g \ a}{f = g}$$

$$f,g:: T_1 \to T_2 \to T:$$

$$\frac{\forall a, b. \ f \ a \ b = g \ a \ b}{f = g}$$

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

$$f :: Int \rightarrow Int \rightarrow Int$$

$$f x y = x+y$$

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

$$f x y = x+y$$

$$f x y = x+y$$
 $f x = \y -> x+y$

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

$$f :: Int \rightarrow Int \rightarrow Int$$
 $f :: Int \rightarrow (Int \rightarrow Int)$
 $f \times y = x+y$ $f \times x = y \rightarrow x+y$

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

$$f :: Int \rightarrow Int \rightarrow Int$$
 $f :: Int \rightarrow (Int \rightarrow Int)$
 $f x y = x+y$ $f x = \y \rightarrow x+y$

Both mean the same:

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

Both mean the same:

$$f a b$$
 (f a) b = $a + b$

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

$$f :: Int \rightarrow Int \rightarrow Int$$
 $f :: Int \rightarrow (Int \rightarrow Int)$
 $f x y = x+y$ $f x = \y \rightarrow x+y$

Both mean the same:

$$f \ a \ b$$
 (f a) b = a + b = (\\\y -> a + \y) b

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

$$f :: Int \rightarrow Int \rightarrow Int$$
 $f :: Int \rightarrow (Int \rightarrow Int)$
 $f x y = x+y$ $f x = \y \rightarrow x+y$

Both mean the same:

f a b (f a) b =
$$(x + b)$$
 = $(x + y)$ b = $(x + y)$ b

The trick: any function of two arguments

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example

$$f :: Int \rightarrow Int \rightarrow Int$$
 $f :: Int \rightarrow (Int \rightarrow Int)$
 $f x y = x+y$ $f x = \y \rightarrow x+y$

Both mean the same:

f a b (f a) b =
$$a + b$$
 = $(y -> a + y) b$ = $a + b$

The trick: any function of two arguments can be viewed as a function of the first argument

In general

Every function is a function of one argument (which may return a function as a result)

In general

Every function is a function of one argument (which may return a function as a result)

$$T_1 \rightarrow T_2 \rightarrow T$$

is just syntactic sugar for

$$T_1 \rightarrow (T_2 \rightarrow T)$$

In general

Every function is a function of one argument (which may return a function as a result)

$$T_1 \rightarrow T_2 \rightarrow T$$

is just syntactic sugar for

$$T_1 \rightarrow (T_2 \rightarrow T)$$

$$f$$
 e_1 e_2

is just syntactic sugar for

$$(f e_1) e_2$$

In general

Every function is a function of one argument (which may return a function as a result)

$$T_1 \rightarrow T_2 \rightarrow T$$

is just syntactic sugar for

$$T_1 \rightarrow (T_2 \rightarrow T)$$

$$f$$
 e_1 e_2

is just syntactic sugar for

$$\underbrace{(f \ e_1)}_{::T_2 \to T} \ e_2$$

Analogously for more arguments

-> is not associative:

$$T_1 \rightarrow (T_2 \rightarrow T) \neq (T_1 \rightarrow T_2) \rightarrow T$$

-> is not associative:

$$T_1 \rightarrow (T_2 \rightarrow T) \neq (T_1 \rightarrow T_2) \rightarrow T$$

Example

$$f x y = x + y$$

-> is not associative:

$$T_1 \rightarrow (T_2 \rightarrow T) \neq (T_1 \rightarrow T_2) \rightarrow T$$

Example

$$f :: Int -> (Int -> Int)$$
 $g :: (Int -> Int) -> Int$
 $f x y = x + y$ $g h = h 0 + 1$

-> is not associative:

$$T_1 \rightarrow (T_2 \rightarrow T) \neq (T_1 \rightarrow T_2) \rightarrow T$$

Example

-> is not associative:

$$T_1 \rightarrow (T_2 \rightarrow T) \neq (T_1 \rightarrow T_2) \rightarrow T$$

Example

$$f :: Int -> (Int -> Int)$$
 $g :: (Int -> Int) -> Int$
 $f x y = x + y$ $g h = h 0 + 1$

Application is not associative:

$$(f e_1) e_2 \neq f (e_1 e_2)$$

Example

(f 3) 4
$$\neq$$
 f (3 4) g (id abs) \neq (g id) abs

Quiz

head tail xs

Correct?

head (tail xs)

Quiz

Quiz

head tail xs

Correct?

head tail xs

Correct?

head (tail xs)

Partial application

Partial application

Every function of n parameters can be applied to less than n arguments

Every function of n parameters can be applied to less than n arguments

Example Instead of sum va

Instead of sum xs = foldr (+) 0 xs just define sum = foldr (+) 0

Partial application

Every function of n parameters can be applied to less than n arguments

Example

Instead of sum xs = foldr (+) 0 xs just define sum = foldr (+) 0

In general:

If
$$f::T_1\to\ldots\to T_n\to T$$
 and $a_1::T_1,\ldots,a_m::T_m$ and $m\le n$ then $f:a_1\ldots a_m::T_{m+1}\to\ldots\to T_n\to T$

6.7 More library functions

$$f \cdot g = \langle x - \rangle f (g x)$$

6.7 More library functions

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow f$$
 . $g = \x \rightarrow f (g x)$

6.7 More library functions

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

f. g = $\x \rightarrow f (g x)$

6.7 More library functions

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

f . g = $x \rightarrow f (g x)$

Example

head2 = head . tail

head2 [1,2,3]

= (head . tail) [1,2,3]

6.7 More library functions

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

f . g = $\x \rightarrow f (g x)$

Example

head2 = head . tail

head2 [1,2,3]

= (head . tail) [1,2,3]

= $(\x -> head (tail x)) [1,2,3]$

6.7 More library functions

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

f . g = $\xspace x \rightarrow f (g x)$

Example

head2 = head . tail

head2 [1,2,3]

= (head . tail) [1,2,3]

 $= (\x -> head (tail x)) [1,2,3]$

= head (tail [1,2,3])

= head [2,3]

6.7 More library functions

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

f . g = $x \rightarrow f (g x)$

Example

head2 = head . tail

head2 [1,2,3]

= (head . tail) [1,2,3]

 $= (\x -> head (tail x)) [1,2,3]$

= head (tail [1,2,3])

= head [2,3]

= 2

const :: $a \rightarrow (b \rightarrow a)$ const $x = \setminus _ \rightarrow x$


```
const :: a -> (b -> a)
const x = \ _ -> x

curry :: ((a,b) -> c) -> (a -> b -> c)
curry f = \ x y -> f(x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f = \ (x,y) -> f x y
```



```
all :: (a \rightarrow Bool) \rightarrow [a] \rightarrow Bool
all p xs = and [p x \mid x \leftarrow xs]
```

```
all :: (a -> Bool) -> [a] -> Bool
all p xs = and [p x | x <- xs]

Example
all (>1) [0, 1, 2]
= False
```

```
all :: (a -> Bool) -> [a] -> Bool
all p xs = and [p x | x <- xs]

Example
all (>1) [0, 1, 2]
= False

any :: (a -> Bool) -> [a] -> Bool
any p = or [p x | x <- xs]

Example
any (>1) [0, 1, 2]
= True
```

```
akeWhile :: (a -> Bool) -> [a] -> [a]
    takeWhile p []
    takeWhile p (x:xs)
       l p x
              = x : takeWhile p xs
                    = []
       | otherwise
    Example
    takeWhile (not . isSpace) "the end"
    = "the"
    dropWhile :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
    dropWhile p []
    dropWhile p (x:xs)
       l p x
                       = dropWhile p xs
       otherwise
                    = x:xs
    Example
    dropWhile (not . isSpace) "the end"
```

```
6.8 Case study: Counting words
```

Input: A string, e.g. "never say never again"

```
akeWhile :: (a -> Bool) -> [a] -> [a]
   takeWhile p []
   takeWhile p (x:xs)
      l p x
              = x : takeWhile p xs
      | otherwise = []
   Example
   takeWhile (not . isSpace) "the end"
   = "the"
   dropWhile :: (a -> Bool) -> [a] -> [a]
   dropWhile p []
   dropWhile p (x:xs)
      l p x
                     = dropWhile p xs
      | otherwise
                   = x:xs
   Example
   dropWhile (not . isSpace) "the end"
   = " end"
```