Script generated by TTT

Title: Nipkow: Info2 (14.11.2014)
Date: Fri Nov 14 07:30:01 GMT 2014
Duration: 87:02 min

Pages: 106

6.3 Combining the elements of a list: foldr

Example

I
o

sum []
sum (x:xs)

X + sum Xs

T S @@ D <> T4 E Fios31 Q

6.3 Combining the elements of a list: foldr

6.3 Combining the elements of a list: foldr

Example

0
X + sum Xs

sum []
sum (x:xs)

sum [x3, ..., X,] =x3 + ... +x, +0

6.3 Combining the elements of a list: foldr

6.3 Combining the elements of a list: foldr

foldr £ a [] = a
foldr f a (x:xs) = x ‘f¢ foldr f a xs

Example Example
sum [] = 0 sum [] = 0
sum (x:¥s) = X + sum xs sum (x:xs) = x + sum Xs
sum [xq, s Xpl =X+ ...+ x, +0 sum [xq, s Xpl = x ¢+ ...+ Xx, + 0
concat [] = [] concat [] = []
concat (xs:xss) = xs ++ concat xss concat (xs:xss) = xs ++ concat xss
concat [xsy, ., XSp) = Xsp 4+ ... ++ x5, ++ []
||
foldr foldr
foldr (&) z [x1, ..., X3l = x1&... &x,F=z foldr (P) z [xq, s Xpl = X1PB... Bx, Dz
Defined in Prelude:
foldr :: (a -> a -> a) -> a -> [a] -> a

foldr

foldr (B) z [x1, ..., X3l =x18... &x, Pz

Defined in Prelude:

foldr :: (a -> a ->a) -> a -> [a] -> a
foldr £ a [] = a

foldr f a (x:xs) = x ‘f¢ foldr f a xs
Applications:

sum xs = foldr (+) 0 xs

concat xss = foldr (++) [] xss

foldr

foldr (B) z [x1, ..., Xl =Xx1D... &x,EzZ

Defined in Prelude:

foldr :: (a -> a ->a) ->a -> [a] -> a
foldr £ a [] = a

foldr f a (x:xs) = x ‘f¢ foldr f a xs
Applications:

sum xs = foldr (+) 0 xs

concat xss = foldr (++) [] xss

What is the most general type of foldr?

foldr

foldr (&) z [x, LoXpl =EXxIE... Bx, Dz

Defined in Prelude:

foldr :: (a -> a ->a) -> a -> [a]l] -> a
foldr £ a [] = a

foldr f a (x:xs) = x ‘f¢ foldr f a xs
Applications:

sum xs = foldr (+) 0 xs

concat xss = foldr (++) [] xss

What is the most general type of foldr?

foldr

foldr f a [] = a
foldr f a (x:xs) x ‘f¢ foldr £ a xs

foldr f a replaces
(:) by f and
(] by a

foldr

foldr (B) z [x1, ..., X3l =x18... &x, Pz

Defined in Prelude:

foldr :: (a -> a ->a) -> a -> [a]l] -> a
foldr £ a [] = a

foldr f a (x:xs) = x ‘f¢ foldr f a xs
Applications:

sum xs = foldr (+) 0 xs

concat xss = foldr (++) [] xss

What is the most general type of foldr?

foldr £ a []
foldr f a (x:xs)

foldr

a
x ‘f¢ foldr f a xs

foldr f a replaces
(:) by f and
(] by a

Evaluating foldr

foldr £ a []
foldr f a (x:xs)

a
x ‘f¢ foldr f a xs

foldr £ a []
foldr f a (x:xs)

Evaluating foldr

a
x ‘f¢ foldr f a xs

foldr (+) 0 [1, -2]

= foldr (+) 0 (1

-2 0 [

x ‘f¢ foldr f a xs

foldr f a (x:xs)

foldr (+) 0 [1, -2]

= foldr (+) 0 (1 : -2 : [1)
1 + foldr (+) 0 (-2 : [1)
1+ -2 + (foldr (+) 0 [1)
=1+ -2+0

foldr f a (x:xs)

foldr (+) 0 [1, -2]

= foldr (+) 0 (1 : -2 : [1)
1 + foldr (+) 0 (-2 : [1)
1+ -2+ (foldr (+) 0 [1)
=1+ -2+0

= -1

|| ® =ES!
Evaluating foldr Evaluating foldr
foldr £ a [] = a foldr £ a [] = a
foldr f a (x:xs) = x ‘f¢ foldr f a xs foldr f a (x:xs) = x ‘f¢ foldr f a xs
foldr (+) 0 [1, -2] foldr (+) 0 [1, -2]
= foldr (+) 0 (1 : -2 : [1) = foldr (+) 0 (1 : -2 : [1)
=1 + foldr (+) 0 (-2 : [1) =1 + foldr (+) 0 (-2 : [1)
=1+ -2 + (foldr (+) 0 [1)
|| ® =ES!
Evaluating foldr Evaluating foldr
foldr £ a [] = a foldr £ a [] = a

x ‘f¢ foldr f a xs

More applications of foldr More applications of foldr

product xs foldr (*) 1 XS product xs foldr (*) 1 xs

and xs foldr (&&) True xs

More applications of foldr More applications of foldr

product xs = foldr (*) 1 XS product xs = foldr (%) 1 xs
and xs = foldr (&&) True XS and xs = foldr (&%) True xs
or Xs = foldr (||) False xs or Xs = foldr (||) False xs

inSort xs = foldr ins] Xs

C
(#

E &
Quiz Quiz
What is What is
foldr (:) ys xs foldr (:) ys xs
Example: foldr (:) ys (1:2:3:[]) =
|| E &
Quiz Quiz
What is What is
foldr (:) ys xs foldr (:) ys xs
Example: foldr (:) ys (1:2:3:[]) = 1:2:3:ys Example: foldr (:) ys (1:2:3:[]) = 1:2:3:ys
foldr (:) ys xXs = XS ++ ys
Proof by induction on xs (Exercise!)

'm | @ Pefinining functions via foldr

e means you have understood the art of higher-order functions

‘1| @ | Jefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

'm | @ Pefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If £ is associative and a ‘f‘ x = x then
foldr f a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

‘| @ | 2efinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Example

If fis associative and a ‘f¢ x = x then
foldr f a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.

Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
=x ‘f¢ foldr f a (xs++ys)

=x ‘f° (foldr f a xs ‘f¢ foldr f a ys) -- by IH
foldr f a (x:xs) ‘f¢ foldr f a ys

(x ‘f¢ foldr f a xs) ‘f‘ foldr f a ys
=x ‘f° (foldr f a xs ‘f¢ foldr f a ys)

-- by assoc.

Therefore, if g xs = foldr f a xs,
then g (xs ++ ys) = g xs ‘f¢ g ys.

S

6.4 Lambda expressions

E::@%:Uefinining functions via foldr

e means you have understood the art of higher-order functions

e allows you to apply properties of foldr

Consider

squares Xs = map sSqr Xs Example
If fis associative and a ‘f¢ x = x then
foldr f a (xs++ys) = foldr f a xs ‘f‘ foldr f a ys.
Proof by induction on xs. Induction step:
foldr f a ((x:xs) ++ ys) = foldr f a (x : (xs++ys))
=x ‘f¢ foldr f a (xs++ys)
=x ‘f° (foldr f a xs ‘f¢ foldr f a ys) -- by IH
foldr £ a (x:xs) ‘ff foldr f a ys
= (x ‘f¢ foldr f a xs) ‘f‘ foldr f a ys
=x ‘f° (foldr f a xs ‘f¢ foldr f a ys) -- by assoc.
Therefore, if g xs = foldr f a xs,
then g (xs ++ ys) = g xs ‘f¢ g ys.
Therefore sum (xs++ys) = sum xs + sum ys,
product (xs++ys) = product xs * product ys, ...

DS | &

6.4 Lambda expressions 6.4 Lambda expressions

Consider Consider

squares Xs = map sSqr Xs squares Xs = map sSqr xXs where sSgr X = X * X

Do we really need to define sqr explicitly? No!

6.4 Lambda expressions 6.4 Lambda expressions
Consider Consider
squares Xs = map sSqr Xs where sSqQr X = X * X squares Xs = map sSqr xXs where sSgr X = X * X
Do we really need to define sqr explicitly? Nol Do we really need to define sqr explicitly? No!
\x -> x * X \Xx -> X * X
is the anonymous function with is the anonymous function with

formal parameter x and result x * x

6.4 Lambda expressions 6.4 Lambda expressions
Consider Consider
squares Xxs = map sSqr Xs where sqr X = X * X squares Xs = map SQr ¥s where sqr X = X * X
Do we really need to define sqr explicitly? Nol! Do we really need to define sqr explicitly? No!
\x -> x * X \Xx -> X * X
is the anonymous function with is the anonymous function with
formal parameter x and result x * x formal parameter x and result x * x
In mathematics: x> x % x In mathematics: x + x * x
Evaluation:

(\x > x*x)3=3%x3=9

C

6.4 Lambda expressions Terminology
Consider
squares Xs = map sqr Xs where sqr X = X * X

Do we really need to define sqr explicitly? Nol (\x => e1) e

X => X * X
\ x: formal parameter

is the anonymous function with ep: result
formal parameter x and result x * x
In mathematics: x> x % x

Evaluation:
(\x > x*x)3=3%x3=29
Usage:
squares xs = map (\x -> x * X) Xs
(m)[@) &)
Terminology Terminology
(\x -> e1) & Ax > e1) e
x: formal parameter x: formal parameter
e1: result ey result
e»: actual parameter e»: actual parameter
Why “lambda”? Why “lambda”?
The logician Alonzo Church invented lambda calculus in the 1930s The logician Alonzo Church invented lambda calculus in the 1930s

Logicians write Ax. e instead of \x —> e

0y . . 0Q . .
Typing lambda expressions Typing lambda expressions
Example Example
(\x -=> x > 0) :: Int -> Bool (\x -=> x > 0) :: Int -> Bool
because x :: Int implies x > 0 :: Bool because x :: Int implies x > 0 :: Bool
The general rule:
A\x =>e) :: Ty > T,
LIS LIS

Typing lambda expressions

Example
(\x -=> x > 0) :: Int -> Bool
because x :: Int implies x > 0 :: Bool

The general rule:

\x > e :: Ty > T,
if x :: Ty implies e :: Ts

Evaluating lambda expressions

(\x -> body) arg = body with x replaced by arg

Evaluating lambda expressions

body) arg = body with x replaced by arg

Evaluating lambda expressions

(\x -> body) arg = body with x replaced by arg

Example
(\xs -> xs ++ xs) [1] = [1] ++ [1]

Sections of infix operators

(\x > x + 1)

Sections of infix operators

(+ 1) means (\x -> x + 1)
(2 *) means (\x -> 2 * x)

=)&) =&
Sections of infix operators Sections of infix operators
(+ 1) means (\x -> x + 1) (+ 1) means (\x -> x + 1)
(2 *x) means (\x -> 2 * x) (2 *) means (\x -> 2 % x)
(2 ") means (\x -> 2 ~ x) (2 ") means (\x -> 2 " %)
(" 2) means (\x -> x ~ 2)
=)&) =&
Sections of infix operators Sections of infix operators
(+ 1) means (\x -> x + 1) (+ 1) means (\x -> x + 1)
(2 *x) means (\x -> 2 * x) (2 *) means (\x -> 2 % x)
(2 ") means (\x -> 2 ~ x) (2 ") means (\x -> 2 " %)
(" 2) means (\x -> x = 2) (" 2) means (\x -> x ~ 2)
etc etc
Example
squares xs = map (T 2) xs

List comprehension

Just syntactic sugar for combinations of map

[£fx | x <- xs] = map f xs

List comprehension

Just syntactic sugar for combinations of map

[f x| x <= xs] map f xs

filter

[x | x<-xs, px] filter p xs

List comprehension

Just syntactic sugar for combinations of map
[£fx | x <- xs] = map f xs

filter

[x| x<-xs8, px] filter p xs
and concat

[f xy | x <-xs, y < ys] =

concat ()

List comprehension

Just syntactic sugar for combinations of map
[f x| x <= xs] = map f xs

filter

[x | x<-xs, px] filter p xs
and concat

[fxy | x< xs, y<ys] =
concat (map () xs)

List comprehension

Just syntactic sugar for combinations of map
[£fx | x <- xs] = map f xs

filter

[x| x<-xs8, px] filter p xs
and concat

[f xy | x <-xs, y < ys] =
concat (map (\x -> map (\y ->) ys) xs)

List comprehension

Just syntactic sugar for combinations of map

[f x| x <= xs] map f xs

filter

[x | x <= xs, px] filter p xs
and concat

[fxy | x < xs, y < ys] =
concat (map (\x -> map (\y -> £ x y) ys) xs)

6.5 Extensionality

Two functions are equal
if for all arguments they yield the same result

6.5 Extensionality

Two functions are equal
if for all arguments they yield the same result

f,g :: Ty > T:
Va.fa=ga

f=g

6.5 Extensionality

Two functions are equal
if for all arguments they yield the same result

f.g :: Ty —> T:
Va.fa=ga

f=g

f.g:: Ty > T > T:

Va,b.fab=gab
f=g

[EHES

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int
fxy = x+y

6.6 Curried functions
A trick (re)invented by the logician Haskell Curry
Example

f :: Int -> Int -> Int
fxy = x+y fx = \y > xty

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int) f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty fxy = x+y fx = \y > xty
Both mean the same:
fab
=a+b
NS TS

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty
Both mean the same:
fab (f a) b
=a+b

6.6 Curried functions

A trick (re)invented by the logician Haskell Curry

Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty

Both mean the same:

fab (f a) b
=a+b = (\y >a+y)b

In general

Every function is a function of one argument
(which may return a function as a result)

LGS LES
6.6 Curried functions 6.6 Curried functions
A trick (re)invented by the logician Haskell Curry A trick (re)invented by the logician Haskell Curry
Example Example
f :: Int -> Int -> Int f :: Int -> (Int -> Int) f :: Int -> Int -> Int f :: Int -> (Int -> Int)
fxy = x+y fx = \y > xty fxy = x+y fx = \y > xty
Both mean the same: Both mean the same:
fab (f a) b fab (f a) b
=a+b = (\y->a+y)b =a+b = (\y >a+7y)b
=a+b =a+b
The trick: any function of two arguments The trick: any function of two arguments
can be viewed as a function of the first argument
LGS LES

In general

Every function is a function of one argument
(which may return a function as a result)

T >T, > T
is just syntactic sugar for

Th > (T2 > T)

=)@ ma
In general In general
Every function is a function of one argument Every. function is a funct|on.of one argument
(which may return a function as a result) (which may return a function as a result)
Tm>To—>T n->T->T
is just syntactic sugar for Is just syntactic sugar for
T, => (T, > T) 7. => (T, > T)
e e fe e
is just syntactic sugar for Is just syntactic sugar for
f
(f e1) e w €2
i To—>T
Analogously for more arguments
LES) L) ES|
-> is not associative: -> is not associative:
Th > (T, > T) # (T1 > Ta) > T T > (T, >T) # (I > Ty) > T
Example

f :: Int -> (Int -> Int)
fxy = x+y

o

(34 # f (34 g (id abs) # (g id) abs

| G| |G | D |
-> is not associative: -> |s not associative:
Tl -> (T2 -> T) 7£ (Tl -> Tg) -> T Tl -> (T2 -> 1) ?é (Tl -> Tg) -> T
Example Example
f :: Int -> (Int -> Int) g (Int -> Int) -> Int f :: Int -> (Int -> Int)
fxy = x+y gh = ho+1 fxy = x+y
oo =)&)
. L Quiz
—> Is not associative:
Tl -> (T2 -> 1) 7£ (Tl -> Tg) -> T
Example
f :: Int -> (Int -> Int) g :: (Int —> Int) -> Int head—tail xs
fxy = x+y gh = ho+1
Correct?
Application is not associative: head (tail xs)
(f e1) eo £ f (e1 &)
Example

oo o
Quiz Quiz
head tail xs head—tail-—=xs
Correct? Correct?
head (tail xs)
LGS LGS
Partial application Partial application
Every function of n parameters Every function of n parameters
can be applied to less than n arguments can be applied to less than n arguments
Example

foldr (+) 0 xs
foldr (+) 0

Instead of sum xs
just define sum

C
g

Partial application

Every function of n parameters
can be applied to less than n arguments

Example
Instead of sum xs

foldr (+) 0 xs

just define sum = foldr (+) O

In general:

If f::T9-> ... >T,->T

and a1 :: T1, ..., am 1 Tm and m<n
then fay ... am 2 Thmay —> ... > T, > T

LS|

6.7 More library functions

f.g = \x->1f (gx)

S

6.7 More library functions

(.) :: (b->c¢c) > (a->>b) —>
f.g = \x—>1f (gx)

LS|

6.7 More library functions

(.) :: (b->¢c) > (a->b) > (a > c)
f.g = \x->1f (gx)

6.7 More library functions

(.) :: (b->¢c) > (a->b) > (a > c)
f.g = \x—>1f (gx)

Example
head2? = head . tail

head?2 [1,2,3]
= (head . tail) [1,2,3]

6.7 More library functions

(.) :: (b->¢c) > (a->b) > (a > c)
f.g = \x—>f (gx)

Example
head2 = head . tail
head2 [1,2,3]

= (head . tail) [1,2,3]
= (\x -> head (tail x)) [1,2,3]

0o

6.7 More library functions

(.) :: (b->¢c) > (a->b) > (a > c)
f.g = \x—>1f (gx)

Example
head2? = head . tail

head2 [1,2,3]

= (head . tail) [1,2,3]

(\x -> head (tail x)) [1,2,3]
head (tail [1,2,3])

head [2,3]

ma

6.7 More library functions

(.) :: (b->¢c) > (a->b) > (a > c)
f.g = \x->1f (gx)

Example
head2 = head . tail

head2 [1,2,3]

= (head . tail) [1,2,3]

(\x -> head (tail x)) [1,2,3]
head (tail [1,2,3]1)

head [2,3]

2

(=)@ o
const :: a -> (b -> a) const :: a -> (b -> a)
const x = \ _ -> x const x = \ _ -> X
curry :: ((a,b) -=> ¢) -> (a -=> b -> ¢)
curry £ = \ xy -> f(x,y)
(=)@ (=)@
all :: (a -> Bool) -> [a] -> Bool
all pxs = and [p x | x <= xs]
const :: a -> (b -> a)
const x = \ _ -> x
curry :: ((a,b) ->¢) -> (a => b -> ¢)
curry £ = \ xy -> f(x,y)
uncurry :: (a -> b -> ¢) -> ((a,b) -> c)
uncurry f = \(x,y) > f xy

all :: (a -> Bool) -> [a] -> Bool

all pxs = and [p x | x <= xs]
Example

all (>1) [0, 1, 2]

= False

LS|

all :: (a -> Bool)

-> [a] -> Bool

all pxs = and [p x | x <= xs]
Example

all (>1) [o, 1, 2]

= False

any :: (a -> Bool)

-> [a]l] -> Bool

any p = or [px | x <- xs]
Example

any (>1) [0, 1, 2]

= True

(m)[@jakeWhile :: (a -> Bool) -> [a]
" takeWhile p [] =[]
takeWhile p (x:xs)

-> [a]

‘m|@|akeWhile :: (a —>
" takeWhile p []
takeWhile p (x:xs)

| p x
| otherwise

Bool) -> [a] —> [a]
(]

x : takeWhile p xs
(]

5@ jakeWhile :: (a -> Bool) -> [a] -> [a] (=l

takeWhile p [] =0 6.8 Case study: Counting words

takeWhile p (x:xs)
l'px = x : takeWhile p xs Input: A string, e.g. "never say never again"
| otherwise = [

Example

takeWhile (not . isSpace) "the end"

= "the"

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] =[]

dropWhile p (x:xs)
| px = dropWhile p xs
| otherwise = x:X8

Example

dropWhile (not . isSpace) "the end"

‘m|«akeWhile :: (a -> Bool) -> [a] —> [a]
7 takeWhile p [] =[]
takeWhile p (x:xs)
| px = x : takeWhile p xs
| otherwise =[]
Example
takeWhile (not . isSpace) "the end"
= "the"

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] =[]

dropWhile p (x:xs)
| px = dropWhile p xs
| otherwise = x:X8

Example

dropWhile (not . isSpace) "the end"
= " end"

