Script generated by TTT

Title:
Date:
Duration: 88:45 min
Pages: 124
LIS
reverse [] = []

Nipkow: Info2 (07.11.2014)

Fri Nov 07 07:30:13 GMT 2014

Inefficiency of reverse

reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

= reverse [2,3] ++ [1]
= (reverse [3] ++ [2])
= ((reverse [] ++ [3])
= (([0 ++ [3]) ++ [2])
= ([3] ++ [2]) ++ [1]
= (3 : ([0 ++ [2])) ++
= [3,2] ++ [1]

=3 : ([2] ++ [1])
=3 : (2:
= [3,2,1]

(01 ++ [11))

++ [1]
++ [2]) ++ [1]
++ [1]

[1]

“

O @M@ D <>y T ) E Fios31 Q

17T

reverse [] = []
reverse (x:xs)

Inefficiency of reverse

= reverse xs ++ [x]

An improvement: itrev

itrev :: [a] -> [a] -> [a]

itrev [] xs

= X8




An improvement: itrev

itrev :: [a] -> [a] -> [a]
itrev [] xs = X8
itrev (x:xs) ys = itrev xs (x:ys)

itrev [1,2,3] []

= itrev [2,3] [1]
itrev [3] [2,1]
itrev [] [3,2,1]

itrev :: [a] -> [a] -> [a]
itrev [] xs = Xs

itrev (x:xs) ys = itrev xs (x:ys)

itrev [1,2,3] []
= itrev [2,3] [1]
= itrev [3] [2,1]
= itrev [] [3,2,1]
= [3,2,1]

An improvement: itrev

Proof attempt

Lemma itrev xs [] = reverse xs

Lemma itrev xs [] = reverse xs
Proof by structural induction on xs

Induction step fails:
IH: itrev xs [] = reverse xs

Proof attempt




C
g

Proof attempt

Lemma itrev xs [] = reverse xs
Proof by structural induction on xs

Induction step fails:
IH: itrev xs [] = reverse xs

To show: itrev (x:xs) [] = reverse (x:xs)
itrev (x:xs) []

(#

Proof attempt

Lemma itrev xs [] = reverse xs
Proof by structural induction on xs

Induction step fails:
IH: itrev xs [] = reverse xs

To show: itrev (x:xs) [] = reverse (x:xs)
itrev (x:xs) []

= itrev xs [x]
reverse (x:xs)

-— by def of itrev

C
g

Proof attempt

Lemma itrev xs [] = reverse xs
Proof by structural induction on xs

Induction step fails:

[H: itrev xs [] = reverse xs

To show: itrev (x:xs) [] = reverse (x:xs)
itrev (x:xs) []
= itrev xs [x]
reverse (x:xs)
= reverse xs ++ [x] -- by def of reverse

—— by def of itrev

(#

Proof attempt

Lemma itrev xs [] = reverse xs
Proof by structural induction on xs

Induction step fails:
IH: itrev xs [] = reverse xs

To show: itrev (x:xs) [] = reverse (x:xs)
itrev (x:xs) []

= itrev xs [x]
reverse (x:xs)
= reverse xs ++ [x] -- by def of reverse

-— by def of itrev

Problem: |H not applicable because too specialized: []




Generalization

Lemma itrev xs ys =

Generalization

Lemma itrev xs ys = reverse xs ++ ys

Generalization

Lemma itrev xs ys = reverse Xxs ++ ys
Proof by structural induction on xs

Induction step:

[H: itrev xs ys = reverse xs ++ ys

To show: itrev (x:xs) ys = reverse (X:xs) ++ ys
itrev (x:xs) ys

= itrev xs (x:ys) -— by def of itrev

Generalization

Lemma itrev xs ys = reverse Xs ++ ys
Proof by structural induction on xs

Induction step:

[H: itrev xs ys = reverse xs ++ ys

To show: itrev (x:xs) ys = reverse (x:xs) ++ ys
itrev (x:xs) ys

itrev xs (x:ys)

reverse xs ++ (x:ys)

reverse (X:Xs) ++ ys

-— by def of itrev
-- by IH




Generalization

Lemma itrev xs ys = reverse Xxs ++ ys
Proof by structural induction on xs

Induction step:

[H: itrev xs ys = reverse xs ++ ys

To show: itrev (x:xs) ys = reverse (X:xs) ++ ys
itrev (x:xs) ys

= itrev xs (x:ys) -— by def of itrev

= reverse xs ++ (x:ys) -- by IH
reverse (x:xs) ++ ys
= (reverse xs ++ [x]) ++ ys -- by def of reverse

Generalization

Lemma itrev xs ys = reverse Xs ++ ys
Proof by structural induction on xs

Induction step:

[H: itrev xs ys = reverse xs ++ ys

To show: itrev (x:xs) ys = reverse (x:xs) ++ ys
itrev (x:xs) ys

= itrev xs (X:ys) -— by def of itrev

= reverse xs ++ (x:ys) -- by IH

reverse (x:Xs) ++ ys

= (reverse xs ++ [x]) ++ ys -- by def of reverse
= reverse xs ++ ([x] ++ ys) -- by Lemma app_assoc

Generalization

Lemma itrev xs ys = reverse Xxs ++ ys
Proof by structural induction on xs

Induction step:

[H: itrev xs ys = reverse xs ++ ys

To show: itrev (x:xs) ys = reverse (X:xs) ++ ys
itrev (x:xs) ys

= itrev xs (x:ys) -— by def of itrev

= reverse xs ++ (x:ys) -- by IH

reverse (x:xs) ++ ys

= (reverse xs ++ [x]) ++ ys -- by def of reverse
= reverse xs ++ ([x] ++ ys) -- by Lemma app_assoc

reverse xs ++ (x:ys) -- by def of ++

When using the IH, variables may be replaced by arbitrary
expressions, only the induction variable must stay fixed.




When using the IH, variables may be replaced by arbitrary
expressions, only the induction variable must stay fixed.

When using the IH, variables may be replaced by arbitrary
expressions, only the induction variable must stay fixed.

Justification:  all variables are implicitly V-quantified,
except for the induction variable.

Induction on the length of a list

gsort :: Ord a => [a] -> [a]

Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = []
gsort (x:xs) = gsort below ++ [x] ++ gsort above
where below = [y | y <= xs, y <= x]
above = [z | y <- xs, x < Z]




Induction on the length of a list

gsort :: Ord a => [a] -> [a]
gsort [] = [
gsort (x:xs) = gsort below ++ [x] ++ gsort above

where below = [y | y <= xs8, y <= x]
above [z | y<-xs, x < Z]

Lemma gsort xs is sorted

Proof by induction on the length of the argument of gsort.

Is that all? Or should we prove something else about sorting?

How about this sorting function?

(]

superquicksort _

Is that all? Or should we prove something else about sorting?

How about this sorting function?

superquicksort _ = []

Every element should occur as often in the output as in the input!

LS|

5.2 Definedness

Simplifying assumption, implicit so far:

No undefined values

Two kinds of undefinedness:

head []
fx=fx+1

raises exception




5.2 Definedness
Simplifying assumption, implicit so far:

No undefined values

Two kinds of undefinedness:
head [] raises exception

f x=f x+ 1 doesnotterminate

5.2 Definedness
Simplifying assumption, implicit so far:

No undefined values

Two kinds of undefinedness:
head [] raises exception

f x=f x+ 1 doesnotterminate

Undefinedness can be handled, too.

5.2 Definedness
Simplifying assumption, implicit so far:

No undefined values

Two kinds of undefinedness:
head [] raises exception

f x=f x+ 1 doesnotterminate

Undefinedness can be handled, too.
But it complicates life

o What is the problem?

Many familiar laws no longer hold unconditionally:

x-x=0
is true only if x is a defined value.

Two examples:
e Not true: head [] - head []1 = 0
e From the nonterminating definition

fx=fx+1
we could conclude that 0 = 1.




C
»

What is the problem?

Many familiar laws no longer hold unconditionally:
x-x=0
is true only if x is a defined value.

Two examples:
e Not true: head [] - head [] = 0

k_“_J What is the problem?

Many familiar laws no longer hold unconditionally:
x-x=0
is true only if x is a defined value.

Two examples:
e Not true: head [] - head [] = 0
e From the nonterminating definition
fx=fx+1
we could conclude that 0 = 1.

C
=

Termination

Termination of a function means termination for all inputs.

0Q ..
Termination

Termination of a function means termination for all inputs.

Restriction:

The proof methods in this chapter assume that all recursive
definitions under consideration terminate.

Most Haskell functions we have seen so far terminate.




How to prove termination

Example

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

How to prove termination

Example

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.

How to prove termination

Example

reverse []1 = []

reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.

:: T1 -> T terminates
T1 —> N such that

A function f
if there is a measure function m ::

o for every defining equation f p = t

LS|

How to prove termination

Example

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.

T1 -> T terminates
T1 -> N such that

A function f
if there is a measure function m ::

e for every defining equation £ p = ¢
e and for every recursivecall f r int: mp > m r.




How to prove termination

Example

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.

A function f :: T1 -> T terminates
if there is a measure function m :: T1 —-> N such that

o for every defining equation f p = t
e and for every recursivecall £ r int: mp > m r.

Note:

o All primitive recursive functions terminate.

LS|

How to prove termination

Example

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

terminates because ++ terminates and with each recursive call of
reverse, the length of the argument becomes smaller.

A function £ :: T1 -> T terminates
if there is a measure function m :: T1 -> N such that

e for every defining equation £ p = ¢
e and for every recursivecall f r int: mp > m r.

Note:
e All primitive recursive functions terminate.
e m can be defined in Haskell or mathematics.

More generally: £ :: T1 -> ... -> Tn -> T terminates
if there is a measure function m :: T1 -> ... ->Tn -> N
such that
o for every defining equation £ p1 ... pn =t
e and for every recursive call £ r1 ... rn int:
mpl ... pn>mrl ... rn

Of course, all other functions that are called by £ must also
terminate.

Infinite values




Infinite values

Haskell allows infinite values, in particular infinite lists.
Example: [1, 1, 1, ...]

Infinite values

Haskell allows infinite values, in particular infinite lists.
Example: [1, 1, 1, ...]

Infinite objects must be constructed by recursion:

ones = 1 ones

Infinite values

Haskell allows infinite values, in particular infinite lists.
Example: [1, 1, 1, ...]
Infinite objects must be constructed by recursion:

ones = 1 ones

Because we restrict to terminating definitions in this chapter,
infinite values cannot arise.

Infinite values

Haskell allows infinite values, in particular infinite lists.
Example: [1, 1, 1, ...]

Infinite objects must be constructed by recursion:

ones = 1 ones

Because we restrict to terminating definitions in this chapter,
infinite values cannot arise.

Note:

e By termination of functions we really mean termination on
finite values.

e For example reverse terminates only on finite lists.




How can infinite values be useful?
Because of “lazy evaluation”.

How can infinite values be useful?
Because of “lazy evaluation”.
More later.

Exceptions

If we use arithmetic equations like x — x = 0 unconditionally,
we can “lose” exceptions:

head xs - head xs = 0

Exceptions

If we use arithmetic equations like x — x = 0 unconditionally,
we can “lose” exceptions:

head xs - head xs = 0
is only true if xs /= []




Exceptions

If we use arithmetic equations like x - x = 0 unconditionally,
we can “lose” exceptions:

head xs - head xs = 0
is only true if xs /= []

In such cases, we can prove equations el = e2 that are only
partially correct:

Summary

e In this chapter everything must terminate

e This avoids undefined and infinite values

Summary

e In this chapter everything must terminate
e This avoids undefined and infinite values

e This simplifies proofs

5.3 Interlude: Type inference/reconstruction

How to infer/reconstruct the type of an expression
(and all subexpressions)




\E % Recall [Pic is short for Picture]

alterH :: Pic ->
alterH picl pic2
alterH picl pic2

alterV :: Pic ->
alterV picl pic2
alterV picl pic2

[y

n

Pic
1 =
n:

Pic

-> Int -> Pic
picil
beside picl (alterH pic2 picl (n-1))

-> Int -> Pic
picil
above picl (alterV pic2 picl (n-1))

Very similar. Can we avoid duplication?

H % Recall [Pic is short for Picture]

alterH :: Pic >
alterH picl pic2
alterH picl pic2

alterV :: Pic —>
alterV picl pic2 1
alterV picl pic2

=]

Pic
1 =
n:

Pic

-> Int -> Pic

pic1l

beside picl (alterH pic2 picl (n-1))
-> Int -> Pic

pic1l

above picl (alterV pic2 picl (n-1))

Very similar. Can we avoid duplication?

alt f picl pic2 1
alt f picl pic2 n

picil
f picl (alt f pic2 picl (n-1))

\E % Recall [Pic is short for Picture]

alterH :: Pic ->
alterH picl pic2
alterH picl pic2

H ~

alterV :: Pic —>
alterV picl pic2 1
alterV picl pic2 n

Pic

-> Int -> Pic
picil
beside picl (alterH pic2 picl (n-1))

-> Int -> Pic
picil
above picl (alterV pic2 picl (n-1))

Very similar. Can we avoid duplication?

alt £ picl pic2 1
alt f picl pic2 n

alterH picl pic2 n

alterV picl pic2 n

picil
f picl (alt f pic2 picl (n-1))

alt beside picl pic2 n

alt above picl pic2 n

Higher-order functions
Functions that take functions as arguments




6.1 Applying functions to all elements of a list: map

D O
Higher-order functions: Higher-order functions:
Functions that take functions as arguments Functions that take functions as arguments
-=> (... => ..0) = -=> (... => ...) =
Higher-order functions capture patterns of computation
S S

6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, False]




RS

6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, False]

map toLower "R2-D2"
= "r2-d2"

6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, Falsel

map toLower "R2-D2"
= "r2-42"

map reverse ["abc", "123"]

= ["cba” s ||321|r]

What is the type of map?

map :: -> ->

RS

6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, False]

map toLower "R2-D2"
= "r2-d2"

map reverse ["abc", "123"]

= l:"cball, Il321”:|

What is the type of map?

map :: (a -> b) -> [a] ->

6.1 Applying functions to all elements of a list: map

Example

map even [1, 2, 3]
= [False, True, False]

map toLower "R2-D2"
= "r2-42"

map reverse ["abc", "123"]

= [llcbail, II321|I:I

What is the type of map?

map :: (a -> b) -> [a] -> [b]




map: |he mother of all higher-order functions

Predefined in Prelude.

map: The mother of all higher-order functions

Predefined in Prelude.
Two possible definitions:

map f xs = [f x| x <= xs ]

Evaluating map

Il
M
L

map £ []
map f (x:xs)

]
'—h

X : map f xs

map sqr [1, -2]

Evaluating map

|
M
—

map f []
map f (x:xs)

]
h

x : map f xs

map sqr [1, -2]
=map sqr (1 : -2 : [1)




map £ []

map f (x:xs)

Evaluating map

n
H —
[

X : map f xs

map sqr [1, -2]

sqr 1

map sqr (1 : -2 : [1)
: map sqr (-2 : [1)

map f []

map f (x:xs)

I} |
H o/
—

X

map sqr [1, -2]

sqr 1

= [1, 4]

sqr 1 :
sqr 1 :
1:4:

: map sqr (-2 :

sqr (-2) :
sqr (-2) :
(]

Evaluating map

map sqr (1 : -2 : [])

: map f xs
(1

(map sqr [1)

(]

Some properties of map

length (map f xs) = length xs

Some properties of map

length (map f xs) = length xs

map f (xs ++ ys) =




B
Some properties of map

length (map f xs) = length xs
map f (xs ++ ys) = map f xs ++ map f ys
map f (reverse xs) = reverse (map f xs)

Proofs by induction

QuickCheck and function variables

QuickCheck does not work automatically
for properties of function variables

QuickCheck and function variables

QuickCheck does not work automatically
for properties of function variables

It needs to know how to generate and print functions.

Cheap alternative: replace function variable by specific function(s)

Example
prop_map_even :: [Int] -> [Int] -> Bool

prop_map_even xs ys =
map even (xs ++ ys) = map even Xs ++ map even ys

QuickCheck and function variables

QuickCheck does not work automatically
for properties of function variables

It needs to know how to generate and print functions.

Cheap alternative: replace function variable by specific function(s)




QuickCheck and function variables

QuickCheck does not work automatically
for properties of function variables

It needs to know how to generate and print functions.

Cheap alternative: replace function variable by specific function(s)

Example
prop_map_even :: [Int] -> [Int] -> Bool
prop_map_even Xs ys =

map even (Xs ++ ys) = map even Xs ++ map even ys

LS|

6.2 Filtering a list: filter

6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

LS|

6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

filter isAlpha "R2-D2"
= "RD"




6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

filter isAlpha "R2-D2"
= "RD"

filter null [[J, [1,2], [1]
= [[1, 111

What is the type of filter?

filter :: -> ->

6.2 Filtering a list: filter

Example

filter even [1, 2, 3]
= [2]

filter isAlpha "R2-D2"
= "RD"

filter null [[], [1,2], [11]
= [[1, [1]

What is the type of filter?

filter :: (a -> Bool) -> [a] ->

filter

Predefined in Prelude.

Predefined in Prelude.
Two possible definitions:

filter pxs = [x | x <= xs, p x]

filter




True or false?

Some properties of filter

Some properties of filter

True or false?

filter p (xs ++ ys) = filter p xs ++ filter p ys

True or false?

Some properties of filter

filter p (xs ++ ys) = filter p xs ++ filter p ys

filter p (reverse xs)

= reverse (filter p xs)

Some properties of filter

True or false?

filter p (xs ++ ys) = filter p xs ++ filter p ys
filter p (reverse xs) = reverse (filter p xs)

filter p (map f xs) = map f (filter p xs)




5.3 Interlude: Type inference/reconstruction

How to infer/reconstruct the type of an expression
(and all subexpressions)

5.3 Interlude: Type inference/reconstruction

How to infer/reconstruct the type of an expression
(and all subexpressions)

Given: an expression e

Type inference:

5.3 Interlude: Type inference/reconstruction

How to infer/reconstruct the type of an expression
(and all subexpressions)
Given: an expression e

Type inference:

@ Give all variables and functions in e their most general type

5.3 Interlude: Type inference/reconstruction

How to infer/reconstruct the type of an expression
(and all subexpressions)

Given: an expression e

Type inference:
@ Give all variables and functions in e their most general type

® From e set up a system of equations between types




5.3 Interlude: Type inference/reconstruction

How to infer/reconstruct the type of an expression
(and all subexpressions)

Given: an expression e

Type inference:
@ Give all variables and functions in e their most general type
® From e set up a system of equations between types

® Simplify the equations

Example: concat (replicate x y)

Example: concat (replicate x y)

Initial type table:
X :: a

Example: concat (replicate x y)
Initial type table:

X a

y :: b

replicate :: Int -> ¢ -> [c]




Example: concat (replicate x y)
Initial type table:

X :: a
y :: b

replicate :: Int -> ¢ -> [c]
concat :: [[d]] -> [d]

LS|

Example: concat (replicate x y)
Initial type table:

X :: a
y :: b

replicate :: Int -> c -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ... e, generate n equations:

Example: concat (replicate x y)
Initial type table:

X :: a
y :: b

replicate :: Int -> ¢ -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ...e, generate n equations:
a = Int,

LS|

Example: concat (replicate x y)
Initial type table:

X o a
y :: b

replicate :: Int -> ¢ -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ... e, generate n equations:
a=1Int,b=c




Example: concat (replicate x y)
Initial type table:

X :: a
y :: b

replicate :: Int -> ¢ -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ...e, generate n equations:
a=1Int,b=c

[c] = [[d]]

Example: concat (replicate x y)
Initial type table:

X :: a
y :: b

replicate :: Int -> c -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ... e, generate n equations:
a=1Int,b=c

[c] = [[d]]
Simplify equations:

Example: concat (replicate x y)
Initial type table:

X :: a
y :: b

replicate :: Int -> ¢ -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ...e, generate n equations:
a=1Int,b=c

[c] = [[d]]
Simplify equations: [c] = [[d]] ~

Example: concat (replicate x y)
Initial type table:

X o a
y :: b

replicate :: Int -> ¢ -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ... e, generate n equations:
a=1Int,b=c

[c] = [[d]]
Simplify equations: [c] = [[d]] ~~ ¢ = [d]




Example: concat (replicate x y)
Initial type table:

X :: a
y :: b

replicate :: Int -> ¢ -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ...e, generate n equations:
a=1Int,b=c

[c] = [[d]]

Simplify equations: [c] = [[d]] ~ ¢ = [d]
b=c~b= [d]

LS|

Example: concat (replicate x y)
Initial type table:

X :: a
y :: b

replicate :: Int -> c -> [c]
concat :: [[d]] -> [d]

For each subexpression f e; ... e, generate n equations:
a=1Int,b=c
[c] = [[d]]

Simplify equations: [c] = [[d]] ~~ ¢ = [d]
b=c~b= [d]

Solution to equation system: a = Int, b = [d], ¢ = [d]

Final type table:

x :: Int
y ::  [d]
replicate :: Int -> [d] -> [[d]]
LGS LGS
Example: concat (replicate x y) Algorithm
Initial type table:
X rooa @ Give the variables xq,...,x, in e the types a1,... a,
y it b where the a; are distinct type variables.
replicate :: Int -> ¢ -> [c] ® Give each occurrence of a function f :: 7 in e a new type 7/
concat :: [[d]] —> [d] that is a copy of T with fresh type variables.

For each subexpression f e; ...e, generate n equations:
a=1Int,b=c

[c] = [[d]]

Simplify equations: [c] = [[d]] ~ ¢ = [d]
b=c~Db = [d]

Solution to equation system: a = Int, b = [d], ¢ = [d]

Final type table:

x :: Int
y :: [d]
replicate :: Int -> [d] -> [[d]]

concat :: [[d]] -> [d]




where the a; are distinct type variables.

® Give each occurrence of a function f :: 7 in e a new type 7/
that is a copy of 7 with fresh type variables.

® For each subexpression f e;...¢, of
where f :: 7y — -+ = 7, — 7 and where g; has type 7;
generate the equations o1 =74, ..., 0, = 7.

LGS LES
Algorithm Algorithm
@ Give the variables xq,...,x, in e the types a,...a, @ Give the variables xq,...,x, in e the types a1,... a,
where the a; are distinct type variables. where the a; are distinct type variables.
® Give each occurrence of a function f :: 7 in e a new type 7’
that is a copy of T with fresh type variables.
(@] |
Algorithm Algorithm
@ Give the variables xq,...,x, in e the types a,...a, @ Give the variables xq,...,x, in e the types a1,... a,

where the a; are distinct type variables.

® Give each occurrence of a function f :: 7 in e a new type 7/
that is a copy of T with fresh type variables.




Algorithm

@ Give the variables xq,...,x, in e the types a,...a,

where the a; are distinct type variables.

@ Give each occurrence of a function f :: 7 in e a new type 7’
that is a copy of 7 with fresh type variables.

® For each subexpression f e;...¢, of
where f :: 7y — -+ = 7, — 7 and where g; has type 7;
generate the equations o1 =74, ..., 0, = 7.

® Simplify the equations with the following rules as long as

Algorithm

@ Give the variables xq,...,x, in e the types a1,... a,

where the a; are distinct type variables.

® Give each occurrence of a function f :: 7 in e a new type 7’
that is a copy of T with fresh type variables.

© For each subexpression f e;...¢e, of €
where f :: 71 — --- —= 7, — 7 and where ¢; has type o;
generate the equations oy =7, ..., 0, = Ty,

@ Simplify the equations with the following rules as long as

possible: possible:
e a2 =1 or T = a: replace type variable a by 7 everywhere
(if a does not occur in 7)
oo =)&)
Algorithm Algorithm
@ Give the variables xq,...,x, in e the types a,...a, @ Give the variables xq,...,x, in e the types a1,... a,

where the a; are distinct type variables.

® Give each occurrence of a function f :: 7 in e a new type 7/
that is a copy of 7 with fresh type variables.

® For each subexpression f e;...¢, of
where f :: 7y — -+ = 7, — 7 and where g; has type 7;
generate the equations o1 =74, ..., 0, = 7.
® Simplify the equations with the following rules as long as
possible:
e a =7 or 7 = a: replace type variable a by 7 everywhere
(if a does not occur in T)
e Toj...opn=TT1...Th ~ O1=T1, ..., 0n=Tp
(where T is a type constructor, e.g. [.1, .->., etc)

where the a; are distinct type variables.

® Give each occurrence of a function f :: 7 in e a new type 7/
that is a copy of T with fresh type variables.

© For each subexpression f e;...¢e, of €
where f :: 71 — --- —= 7, — 7 and where ¢; has type o;
generate the equations oy =7, ..., 0, = Ty,
@ Simplify the equations with the following rules as long as
possible:
e a2 =1 or T = a: replace type variable a by 7 everywhere
(if a does not occur in 7)
e Toj...op=T71...7Tp ~ O1=T1, ..., 0n=Th
(where T is a type constructor, e.g. [.1, .=>., etc)
e a=T...a...orT...a...= a: type error!




Algorithm

@ Give the variables xq,...,x, in e the types a,...a,
where the a; are distinct type variables.

@ Give each occurrence of a function f :: 7 in e a new type 7’
that is a copy of 7 with fresh type variables.

® For each subexpression f e;...¢, of
where f :: 7y — -+ = 7, — 7 and where g; has type 7;
generate the equations o1 =74, ..., 0, = 7.

® Simplify the equations with the following rules as long as
possible:

e a =7 or 7 = a: replace type variable a by 7 everywhere
(if a does not occur in T)

e Toj...opn=TT1...Th ~ O1=T1, ..., 0n=Tp
(where T is a type constructor, e.g. [.1, .->., etc)

e a=T...a...0orT...a...= a: type error!

e T...=T'...where T # T': type error!

e For simple expressions you should be able to infer types
“durch scharfes Hinsehen”

e Use the algorithm if you are unsure or the expression is
complicated

e For simple expressions you should be able to infer types
“durch scharfes Hinsehen”

e Use the algorithm if you are unsure or the expression is
complicated

e Or use the Haskell interpreter

Some properties of filter

True or false?

filter p (xs ++ ys) = filter p xs ++ filter p ys
filter p (reverse xs) = reverse (filter p xs)

filter p (map f xs) = map f (filter p xs)




File Edit

View Window Help

# Adobe Reader

@‘ (& Amortized_Complexity — bash — 73x22

lornPerform + 229
31 CoreFoundation
NLODP_IS_CALLING_OUT_TO_A_SDURCE_PERFORM_FUNCTION_ + 17
32 CoreFoundation

nLoopDoSourcesd + 242

33 Corefoundation

nLoopRun + B31

CoreFoundation
9

3
oopRunSpecitic + 38

35 java
ExecutionEnvironment + B71

36 java
unch + 1952

37 java
181

38 java
+ 52

8x0000777 785887501 __CFRU
8x0007777B5878c62 __CFRu
8x0007777858783ef __CFRu
8x000777 78587775 CFRunL
9x000000018e7d330@ Create
8x000000018efcdbSc ILI_La
9x000000018e7d378d main +

@xea0a00810efcdibd start

)

Libc++abi.dylib: terminating with uncaught exception of type JNFException

/Users/nipkow/isabelle/1ib/Tools/java: line 1: 28488 Abort trap: 6
"$JAVA_HOME/bin/SPRG" "s@"

apnipkowld:Amortized_Complexity nipkows [J

e

(L NF-Rybal — bash — 80x24

3b0c065020fc012ea5ch
00163e41dd5b.gif

George Benson — Song
For My Fat...layltpk.mp4

toulouse.pdf

Wien.pdf

ProofOfFalseWithol
edef2.thy

HG: Last login:

Lapnipkowld:

Wed Nov 5 13:25:37 on ttyse84
~ nipkows cd Desktop/NF-Rybal/
F-Rybal nipkows cp einladung einladung2
F-Rybal nipkows xemacs einladung2

F-Rybal nipkows [|

h_slides.pdf

pdf’

Rinku

0001. Alle_Kandidaten

bericht.pdf

Bewerbungen
x

Ims—qv.pdf

Leistungsnachweis -
Info.pdf

Klageriicknahme.pdf

Prozesskostenrisiko3.pd
f

union—find.pdf

16 Pieces de Clavecin,
Book [lI- T...-peine.wma

02 Pieces de Clavecin,
Book I1l- T...zeaux.wma

01 Pieces de Clavecin,
Book III- T...issans.wma

lapnipkowl HD

Lehreprofil.pdf

Forschungsprofil.pdf
ex05.pdf

blatt5.pdf.

SystExpCont.pdf

main-1pdf

esop2011.pdf’

fide2014.pdf

Ubersichtxlsx




