Script generated by TTT

Title: Nipkow: Info2 (24.10.2014)
Date: Fri Oct 24 06:29:50 GMT 2014
Duration: 107:54 min

Pages: 173

Example: concat

concat xss = [x | xs <- xs8s, X <- x8]

concat [[1,2], [4,5,6]1]

=[x | xs <- [[1,2], [4,5,6]], x <- xs]
=[x | x <= [1,2]] ++ [x | x <~ [4,5,6]]
[1,2] ++ [4,5,6]

[1,2,4,5,6]

What is the type of concat?

(al]l —> [al

T O EQOmM D <> ¢ F T) @E Fios3l Q

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types

[EHES

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types

S

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types

Example
length :: [Bool] -> Int
length :: [Char] -> Int

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types

Example

length :: [Bool] -> Int
length :: [Char] -> Int
length :: [[Int]] -> Int

0o

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types

Example

length :: [Bool] -> Int
length :: [Char] -> Int
length :: [[Int]] -> Int

The most general type:

length :: [a] -> Int

4.2 Generic functions: Polymorphism

Polymorphism = one function can have many types

Example

length :: [Bool] -> Int
length :: [Char] -> Int
length :: [[Int]] -> Int

The most general type:
length :: [a] -> Int

where a is a type variable

C
»

Type variable syntax

Type variables must start with a lower-case letter
Typically: a, b, c, ...

Two kinds of polymorphism

Subtype polymorphism as in Java:

C
»

Two kinds of polymorphism

Subtype polymorphism as in Java:

faoT—=U T <T
foT =U

(remember: horizontal line = implication)

Parametric polymorphism as in Haskell:
Types may contain type variables (“parameters”)

Two kinds of polymorphism

Subtype polymorphism as in Java:

foT—=U T <T
foT =U

(remember: horizontal line = implication)

Parametric polymorphism as in Haskell:
Types may contain type variables (“parameters”)

foT
fT[U/a]

where T[U/a] = "T with a replaced by U"

LGS LGS
Two kinds of polymorphism Two kinds of polymorphism
Subtype polymorphism as in Java: Subtype polymorphism as in Java:
foT—=U T<T f=T—=U T<T
Fo T 5 U foT —-U
(remember: horizontal line = implication) (remember: horizontal line = implication)
Parametric polymorphism as in Haskell: Parametric polymorphism as in Haskell:
Types may contain type variables (“parameters”) Types may contain type variables (“parameters”)
foT foT
fT[U/a fT[U/a]
where T[U/a] = “T with a replaced by U" where T[U/a] = "T with a replaced by U"
Example: (a — a)[Bool/a] Example: (a — a)[Bool/a] = Bool — Bool
EEY (][]

Two kinds of polymorphism

Subtype polymorphism as in Java:

faoT—=U T <T
foT =U

(remember: horizontal line = implication)

Parametric polymorphism as in Haskell:
Types may contain type variables (“parameters”)

foT
f:T[U/a]
where T[U/a] = “T with a replaced by U"
Example: (a — a)[Bool/a] = Bool — Bool

(Often called ML-style polymorphism)

Defining polymorphic functions

Defining polymorphic functions Defining polymorphic functions
id a -> a id :: a -> a
idx = x idx = x

fst :: (a,b) -> a
fst (x,y) = x fst (x,y) = x
()@ mj

Defining polymorphic functions Defining polymorphic functions
id :: a -> a id :: a -> a
idx = x idx = x
fst :: (a,b) -> a fst :: (a,b) -> a
fst (x,y) = x fst (x,y) = x

swap :: (a,b) ->
swap (x,y) = (y

(b,a)
,X)

swap :: (a,b) -> (b,a)
swap (x,y) = (y,x)

silly :: Bool -> a -> Char
silly x y = 1if x then ’c’ else ’d’

Defining polymorphic functions

id :: a -> a

idx = X

fst :: (a,b) -> a
fst (x,y) = x

swap :: (a,b) -> (b,a)
swap (x,y) = (y,x)

silly :: Bool -> a —-> Char

@) _
Defining polymorphic functions
id :: a -> a
idx = x
fst :: (a,b) -> a
fst (x,y) = x

swap :: (a,b) -> (b,a)
swap (x,y) = (y,x)

silly :: Bool -> a -> Char

silly x y = 1if x then ’c’ else ’'d’ silly x y = 1if x then ’c’ else ’d’
8illy2 :: Bool -> Bool -> Bool
silly2 x y = 1if x then x else y silly2 x y = 1if x then x else y
S LS|

Polymorphic list functions from the

length :: [a] -> Int
length [56, 1, 9] = 3

Polymorphic list functions from the

length :: [a] -> Int
length [5, 1, 9] = 3

(++) :: [a] -> [a] -> [a]
[1, 2] ++ [3, 4] = [1, 2, 3, 4]

reverse :: [a] —-> [a]

reverse [1, 2, 3] = [3, 2, 1]

Polymorphic list functions from the

length :: [a] -> Int
length [, 1, 9] = 3

(++) :: [a] -> [a] -> [a]
[1, 21 ++ [3, 4] = [1, 2, 3, 4]

reverse :: [a] -> [a]
reverse [1, 2, 3] = [3, 2, 1]

replicate :: Int -> a -> [a]

replicate 3 ’c’ = "ccc"

Polymorphic list functions from the

head, last :: [a] -> a
head "1list" = ’1°7,

Polymorphic list functions from the

head, last :: [a] -> a
head "list" = ’1°, last "list" = ’t’

Polymorphic list functions from the

head, last :: [a] -> a
head "list" = °’1°7, last "list" = ’t°
tail, init :: [a] -> [a]

tail "list" = "ist",

Polymorphic list functions from the

head, last :: [a] -> a

head "list" = ’1°, last "list" = ’t’
tail, init :: [a]l -> [a]

tail "list" = "ist", init "list" = "l1lis"

Polymorphic list functions from the

head, last :: [a] -> a

head "1list" = ’1°7, last "list" = ’t’
tail, init :: [a] -> [a]

tail "list" = "ist", init "list" = "lis"

take, drop :: Int -> [a] -> [a]
take 3 "list" = "lis", drop 3 "list" = "t"

Polymorphic list functions from the

concat ::
concat [[1, 2], [3, 41, [0]1] = [1, 2, 3, 4, O]

Polymorphic list functions from the

concat :: [[al]l -> [al
concat [[1, 21, [3, 41, [01] = [1, 2, 3, 4, 0]

Polymorphic list functions from the

[[al]l -> [a]
concat [[1, 2], [3, 41, [0]1] = [1, 2, 3, 4, 0]

concat ::

zip ::
zip [1,2] "ab" = [(1, ’a’), (2, ’b’)]

Polymorphic list functions from the

[[al] —> [al
concat [[1, 2], [3, 41, [0]1] = [1, 2, 3, 4, 0]

concat ::

zip :: [a] -> [b] —> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b")]

unzip :: [(a,b)] -> ([a],[b])
unzip [(1, ’a’), (2, ’b’)] = ([1,2], "ab")

Polymorphic list functions from the

[[a]] -> [a]
concat [[1, 2], [3, 4], [0]] = [1, 2, 3, 4, 0]

concat ::

zip :: [a] -> [b] -> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b’)]

unzip :: [(a,b)] -> ([a],[b])
unzip [(1, ’a’), (2, ’b?)] = ([1,2], "ab")

-— A property
prop_zip Xs ys =
unzip(zip xs ys) ==

Polymorphic list functions from the

[[al]l -> [a]
concat [[1, 21, [3, 41, [01] = [1, 2, 3, 4, 0]

concat ::

zip :: [a] -> [b] —> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b")]

unzip :: [(a,b)] -> ([a],[b])
unzip [(1, ’a’), (2, ’b’)] = ([1,2], "ab")

-— A property
prop_zip Xs ys =
unzip(zip xs ys) == (xs, ys)

(m]@)

Polymorphic list functions from the

[[al]l -> [a]
concat [[1, 2], [3, 41,

concat
(o1l = 1, 2, 3, 4, 0]

zip [al] -> [b] -> [(a,b)]
zip [1,2] "ab" = [(1, ’a’), (2, ’b’)]

unzip [(a,p)] -> ([a]l, [b])

unzip [(1, ’a’), (2, ’b’)] = ([1,2], "ab")

-— A property

prop_zip xs ys = length xs == length ys ==
unzip(zip xs ys) == (xs, ys)

=&

Haskell libraries

e [Prelude and much more

]
]

(m]@)

Haskell libraries

o [Prelude and much more]

° — searching the Haskell libraries

http:/ fwww.haskell.org/hoogle/

1

Firefox File Edit View History Bookmarks Tools Window Help

@@ D <> ¢ 4 B4 E Fisgs? Q i=

(B[] N oo %
— \

@ www.haskell.org/hoogle /?hoogle=([a]]+->+(a]

& | (B- coogle adEAaHwE

(] Most visited ~ [M~ []Radio~ []Search~ []People~ []Places~

| Instantis off | Search plugin | Manual | haskell.org

I{oogke;mp>m

Packages
= base ¥
= filepath =+

| | Search

[[a]] > [a]

concat :: [[a]] -> [a]

base Prelude, base Data.List
Concatenate a list of lists.

intercalate :: [a] -> [[a]] ->[a]

base Data.List
intercalate xs xss is aquivalent to (concat (intersperse xs xss)). It inserts the list xs in batween the lists in xss and concatenates the result

nmergelO : [[a]] -> 10 [a]

base Control.Concurrent

transpose :: [[a]] = [[a]]
base Data.List
@ The transpose funcion transposes the rows and columns of its argument. For example, > transpose [[1,2,3][4,5,61] == [[1,4),12,51[3.6]]

concat :: Foldable t =>t [a] -> [a]
base Data.Foldable

The concatenation of all the elements of a container of lists.
msum :: MonadPlus m=>[ma] ->m a
base Control.Monad

This generalizes the list-based concal function.

cycle :: [a] ->[a]

=3

=

& G-

® Firefox File Edit View History Bookmarks Tools Window Help [@ @ O <> « & 2 «4) @& Friog:s58 Q =
g e & | || |

DR Sr——
Ve o ABBE RS Q| = Haskell libraries

=

| €) @ hackage.haskell.org/packages/#cat:Hash & | (B~ Google
[E@] MostVisited ~ [M~ []Radio~ []Search ~ [_]People~ []Places ~
Hash

+ hash library: Hashing tools
+ hashable-extras library: Higher-rank Hashable

Haskell
« fast-tags program: Fast incremental vi tags. ® |P|‘e| l_,lde a nd m IJCh mOI’e‘

«+ fix-imports program: Program to manage the imports of a haskell module
« haskell-reflect library: Reflect Haskell types.

« module-management library and program: Clean up module imports, split and merge modules . . .
« no-role-annots library: Role annotations without -XRoleAnnotations L] H00g|e — Sea rCh ng the Haskel | ||bra ries

Haskell2010

« haskell2010 library: Compatibility with Haskell 2010 ¢ Hackage-—-a collection of Haskell packages

Haskell98
' : .
< haskels6 Horary: Compatisilty with Haskel 98 See Haskell pages and Thompson's book for more information.

» haskell98libraries library: Compatibility with Haskell 98

Help

+ CheatSheet program: A Haskell cheat sheet in POF and literate formats.
+ hscurses-fish-ex program: hscurses swimming fish example

Heuristics

| |
L!!JL__J L)

Further list functions from the |Prelude Further list functions from the |Prelude

and :: [Bool] -> Bool and :: [Bool] -> Bool

and [True, False, True] = False and [True, False, True] = False

or :: [Bool] -> Bool or :: [Bool] -> Bool

or [True, False, True] = True or [True, False, True] = True

—-— For numeric types a:
sum, product :: [a] -> a

sum [1, 2, 2] =5,

Further list functions from the |Prelude

and :: [Bool] -> Bool

and [True, False, True] = False

or :: [Bool] -> Bool

or [True, False, True] = True

—-— For numeric types a:
sum, product :: [a] -> a

sum [1, 2, 2] = 5, product [1, 2, 2] = 4

Further list functions from the |Prelude

and :: [Bool] -> Bool

and [True, False, True] = False

or :: [Bool] -> Bool

or [True, False, True] = True

—--— For numeric types a:
sum, product :: [a] -> a

sum [1, 2, 2] = 5, product [1, 2, 2] = 4

What exactly is the type of sum, prod, +, *, ==, ... 777

Polymorphism versus Overloading

Polymorphism: one definition, many types

Polymorphism versus Overloading

Polymorphism: one definition, many types

Overloading: different definition for different types

C
»

Polymorphism versus Overloading

Polymorphism: one definition, many types

Overloading: different definition for different types

Example

Function (+) is overloaded:

Polymorphism versus Overloading

Polymorphism: one definition, many types

Overloading: different definition for different types

Example
Function (+) is overloaded:

e on type Int: built into the hardware

C
»

Polymorphism versus Overloading

Polymorphism: one definition, many types

Overloading: different definition for different types

Example
Function (+) is overloaded:
e on type Int: built into the hardware

e on type Integer: realized in software

Polymorphism versus Overloading

Polymorphism: one definition, many types

Overloading: different definition for different types

Example
Function (+) is overloaded:
e on type Int: built into the hardware

e on type Integer: realized in software

So what is the type of (+) 7

Numeric types

(#4) :: Num a => a -> a -> a

Numeric types

(#) :: Num a => a -> a -> a

Function (+) has type a -> a -> a for any type of class Num

e Class Num is the class of numeric types.

Numeric types

(#4) :: Num a => a -> a -> a

Function (+) has type a -> a -> a for any type of class Num

e Class Num is the class of numeric types.

e Predefined numeric types: Int, Integer, Float

Numeric types

(#) :: Num a => a -> a -> a

Function (+) has type a -> a -> a for any type of class Num

e Class Num is the class of numeric types.
¢ Predefined numeric types: Int, Integer, Float

e Types of class Num offer the basic arithmetic operations:
(#4) :: Num a => a -> a -> a
(<) :: Numa =>a ->a ->a
(*) :: Num a => a -> a -> a

Other important type classes o Other important type classes

e The class Eq of equality types, i.e. types that posess
(== Eq a => a -> a -> Bool

/=) Eq a => a -> a -> Bool
LGS LGS
Other important type classes Other important type classes
e The class Eq of equality types, i.e. types that posess e The class Eq of equality types, i.e. types that posess
(== Eq a => a -> a -> Bool (==) :: Eq a=>a ->a -> Bool
(/=) :: Eq a=>a->a ->Bool (/=) Eq a => a -> a -> Bool
Most types are of class Eq.

Most types are of class Eq. Exception: functions

Other important type classes

e The class Eq of equality types, i.e. types that posess
(== Eq a => a -> a -> Bool
(/=) Eq a => a -> a -> Bool
Most types are of class Eq. Exception: functions

e The class Ord of ordered types, i.e. types that posess

L)
2

Other important type classes

(<) Ord a => a -> a -> Bool
7g Lermina] Shell Edit View Window Help OE@m D <>y T 4 E il Q

800 [iCode —ahc—76x34__ ‘
Last login: Fri Oct 24 @6:55:55 on ttys@ee
lapnipkowld:~ nipkow$ cd

lapnipkowld:~ nipkow$ cd Teaching/FP/1415/
lapnipkowld:1415 nipkow$ 1s

Code Info2_2014_10_17.wav
Info2_2014_10_17.ttt Slides
lapnipkowld:1415 nipkow$ cd Code/
lapnipkowld:Code nipkow$ ghci

~ 1

cp-TTT
slides.pdf

Adobe Reader

Other important type classes

e The class Eq of equality types, i.e. types that posess
(== Eq a => a -> a -> Bool
(/=) Eq a => a -> a -> Bool
Most types are of class Eq. Exception: functions

e The class 0rd of ordered types, i.e. types that posess
(<) Ord a => a -> a -> Bool
(<=) Ord a => a -> a -> Bool

Other important type classes

e The class Eq of equality types, i.e. types that posess
(==) :: Eq a=>a->a -> Bool
(/=) :: Eq a=>a->a ->Bool
Most types are of class Eq. Exception: functions

e The class Ord of ordered types, i.e. types that posess
(<) :: Ord a => a -> a -> Bool
(¢<=) :: 0rd a => a -> a -> Bool

More on type classes later. Don't confuse with OO classes.

Warning: == []

Warning: == []

[a] -> Bool
= xs == []

Warning: == []

=

| G| . .
Warning: == [] Warning: == []
null :: Eq a => [a] -> Bool null :: Eq a => [a] -> Bool
null xs = xs == [] null xs = xs == []
Why?
==on [a] may call == on a
Better:
null :: [a] -> Bool
null [] = True
null _ = False
In Preludel
()@ mj

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Example

QuickCheck does not find a counterexample to
prop reverse :: [a] -> Bool

prop reverse Xs = reverse Xs == XS

The solution: specialize the polymorphic property, e.g.

prop_reverse :: [Int] -> Bool
prop_reverse xs = Treverse Xs == XS

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Example Example

QuickCheck does not find a counterexample to QuickCheck does not find a counterexample to

prop. reverse :: [a] -> Bool prop reverse :: [a] -> Bool

prop reverse Xs = reverse Xs == XS prop reverse Xs = reverse Xs == XS
The solution: specialize the polymorphic property, e.g.
prop_reverse :: [Int] -> Bool
prop_reverse Xs = Treverse Xs == Xs

=)@ =&

Warning: QuickCheck and polymorphism

QuickCheck does not work well on polymorphic properties

Example

QuickCheck does not find a counterexample to
prop. reverse :: [a] -> Bool

prop reverse Xs = reverse Xs == XS

The solution: specialize the polymorphic property, e.g.

prop_reverse :: [Int] -> Bool
prop_reverse Xs = Treverse Xs == XS

Now QuickCheck works

Conditional properties have result type Property

4.3 Case study: Pictures
type Picture = [String]

Conditional properties have result type Property

Example
prop revi0 :: [Int] -> Property
prop_revi0 xs =
length xs <= 10 ==> reverse(reverse Xs) == Xs

Conditional properties have result type Property

Conditional properties have result type Property

Example
prop revi0 :: [Int] -> Property
prop_revi0 xs =
length xs <= 10 ==> reverse(reverse Xs) == Xs

4.3 Case study: Pictures
type Picture = [String]

4.3 Case study: Pictures
type Picture = [String]

uarr :: Picture
uarr =
I:ll # n
n ### n ,
R 550 A
n # n ,
n # n ,

flipH :: Picture -> Picture

4.3 Case study: Pictures
type Picture = [String]

uarr :: Picture
uarr =
I:ll # " ,
n ### ",
RS,
" # " s

n # " ,

larr ::
larr =
[Il # II,

n ## n ,
"
n ## n ,
n # n ,

Picture

above

=)@ m]&
flipH :: Picture -> Picture flipH :: Picture -> Picture
flipH = reverse flipH = reverse
flipV :: Picture -> Picture
flipV pic =
=)@ m]&
flipH :: Picture -> Picture flipH :: Picture -> Picture
flipH = reverse flipH = reverse
flipV :: Picture -> Picture flipV :: Picture -> Picture
flipV pic = [reverse line | line <- pic] flipV pic = [reverse line | line <- pic]
rarr :: Picture rarr :: Picture
rarr = flipV larr rarr = f1lipV larr
darr :: Picture darr :: Picture
darr = flipH uarr darr = f1lipH uarr
above :: Picture -> Picture -> Picture

@, | MFEN
flipH :: Picture -> Picture flipH :: Picture -> Picture
flipH = reverse flipH = reverse
flipV :: Picture -> Picture flipV :: Picture -> Picture
flipV pic = [reverse line | line <- pic] flipV pic = [reverse line | line <- pic]
rarr :: Picture rarr :: Picture
rarr = flipV larr rarr = f1lipV larr
darr :: Picture darr :: Picture
darr = flipH uarr darr = flipH uarr
above :: Picture -> Picture —-> Picture above :: Picture -> Picture -> Picture
above = (++) above = (++)
beside :: Picture -> Picture -> Picture
® Terminal Shell Edit View Window Help DN @D <> ¢ F T) E 0829 Q =
JIES! LGS
flipH :: Picture -> Picture 800 (2] Code — less — 76x24 .
fllpH = Treverse - Derived from
. . . - Haskell: The Craft of Functional Programming
flipV :: Picture -> Picture - Simon Thompson
flipV pic = [reverse line | line <- pic] - (c) Addison-Wesley, 1996-2010.
- Pictures.hs
rarr :: Picture -]]]
. - An implementation of a type of rectangular pictures
rarr = flipV larr — using lists of lists of characters.
darr :: Picture import Test.QuickCheck
darr = flipH uarr
p type Picture = [String]
above :: Picture -> Picture -> Picture {g;;i: Picture
above = (++) [o# o,
TPV
"RERER"
beside :: Picture -> Picture -> Picture "o ",

beside picl pic2 = —

Terminal Shell Edit View Window Help g @D <>y f = 4 @ Fi31 Q = 8 Terminal Shell Edit View Window Help EE @ D <>y 2 =) @F 032 Q =

O | =&

@00 [7) Code — less — 76x24 1 @00 (7] Code — ghc — 76x24 1
above = (++) flipV (picl ‘above’ pic2) == (flipV picl) ‘above® (flipV pic2)
beside :: Picture -> Picture -> Picture prop_aboveFlipH picl pic2 =
beside picl pic2 = [linel ++ line2 | (linel,line2) <- zip picl pic2] flipH (picl “above® pic2) == (flipH picl) “above’ (flipH pic2)
—— Test properties —- Displaying pictures:
prop_aboveFlipV picl pic2 = render :: Picture -> String
flipV (picl ‘above® pic2) == (flipV picl) ‘above® (flipV pic2) render pic = concat [line ++ "\n" | line <- pic]
prop_aboveFlipH picl pic2 = pr :: Picture —> I0()
flipH (picl ‘above’ pic2) == (flipH picl) ‘above® (flipH pic2) pr pic = putStr(render pic)
—— Displaying pictures: —— Chessboards
render :: Picture -> String lapnipkowld:Code nipkow$ ghci
render pic = concat [line ++ "\n" | line <- pic] GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
pr :: Picture -> IO0() Loading package integer—-gmp ... linking ... done.
pr pic = putStr(render pic) Loading package base ... linking ... done.
Prelude> :1 Pictures
—-— Chessboards [1 of 1] Compiling Main (Pictures.hs, interpreted)
0k, modules loaded: Main.
B #Main> quickCheck

T —

Terminal Shell Edit View Window Help EEQ @D <<y =4 E Fi0e33 Q=
oo O
eoo BiCode = ghe— 76024 | Chessboards

pr pic = putStr(render pic)
-- Chessboards

lapnipkowld:Code nipkow$ ghci
GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Prelude> :1 Pictures

[1 of 1] Compiling Main (Pictures.hs, interpreted)

0k, modules loaded: Main.
*Main> quickCheck prop_aboveFlipV

Loading package array-9.4.9.1 ... linking ... done.
Loading package deepsegq-1.3.8.1 ... linking ... done.
Loading package old-locale-1.0.0.5 ... linking ... done.
Loading package time-1.4.0.1 ... linking ... done.
Loading package random-1.0.1.1 ... linking ... done.
Loading package containers-0.5.0.0 ... linking ... done.
Loading package pretty-1.1.1.0 ... linking ... done.
Loading package template-haskell ... linking ... done.
Loading package QuickCheck-2.6 ... linking ... done.

+++ 0K, passed 100 tests.

*Main>

-_

S LS|
Chessboards Chessboards
bSq = replicate 5 (replicate 5 ’#’) bSq = replicate 5 (replicate 5 ’#’)
wSq = vreplicate 5 (replicate 5 ° 7)
)@ =&
Chessboards Chessboards
bSq = replicate 5 (replicate 5 ’#’) bSq = replicate 5 (replicate 5 ’#’)
wSq = replicate 5 (replicate 5’ 7) wSq = replicate 5 (replicate 5 7 7)
alterH :: Picture -> Picture -> Int -> Picture alterH :: Picture -> Picture -> Int -> Picture
alterH picl pic2 1 = picl

chessboard n =

(=& mj&
Chessboards Chessboards
bSq = replicate 5 (replicate 5 ’#’) bSq = replicate 5 (replicate 5 ’#’)
wSq = replicate 5 (replicate 5 7) wSq = vreplicate 5 (replicate 5 ° 7)
alterH :: Picture -> Picture -> Int -> Picture alterH :: Picture -> Picture -> Int -> Picture
alterH picl pic2 1 = picl alterH picl pic2 1 = picl
alterH picl pic2 n = alterH picl pic2 n = picl ‘beside‘ alterH pic2 picil (n-1
NS LIS
Chessboards Chessboards
bSq = replicate 5 (replicate 5 ’#’) bSq = replicate 5 (replicate 5 ’#’)
wSq = replicate 5 (replicate 5’ 7) wSq = replicate 5 (replicate 5 7 7)
alterH :: Picture -> Picture -> Int -> Picture alterH :: Picture -> Picture -> Int -> Picture
alterH picl pic2 1 = picl alterH picl pic2 1 = picl
alterH picl pic2 n = picl ‘beside‘ alterH pic2 picil (n-1 alterH picl pic2 n = picl ‘beside‘ alterH pic2 picil (n-1
alterV :: Picture -> Picture -> Int -> Picture alterV :: Picture -> Picture -> Int -> Picture
alterV picl pic2 1 = picl alterV picl pic2 1 = picl
alterV picl pic2 n = picl ‘above‘ alterV pic2 picl (n-1) alterV picl pic2 n = picl ‘above‘ alterV pic2 picl (n-1)
chessboard :: Int -> Picture chessboard :: Int -> Picture

alterV bw wb n where

® Terminal

Shell Edit

@ D <> ¢ T) G Fios40 Q=

@

View Window Help

(][] (=]«
Chessboards 806 (2] Code — ghc — 76x24 - I ' |

pr pic = putStr(render pic)

bSq = replicate 5 (replicate 5 ’#’) — Chesshoards

. . lapnipkowld:Code nipkow$ ghci

wSq = replicate 5 (replicate 5 7) GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.
. . . Loading package integer—-gmp ... linking ... done.
alterH Picture -> Picture -> Int -> Picture Loading package base ... linking ... done.
. . - . Prelude> :1 Pictures

alterH picl pic2 1 pict [1 of 1] Compiling Main (Pictures.hs, interpreted)

alterH picl pic2 n = picl ‘beside‘ alterH pic2 picil (n-1 0k, modules loaded: Main.
*Main> quickCheck prop_aboveFlipV
Loading package array-0.4.0.1 ... linking ... done.

alterV Picture -> Picture -> Int -> Picture Loading package deepseq-1.3.0.1 ... linking ... done.

1terV pici ico 1 = ic1 Loading package old-locale-1.0.0.5 ... linking ... done.

alteryv picl pic = Ppic Loading package time-1.4.0.1 ... linking ... done.

alterV picl pic2 n = picl ‘above‘ alterV pic2 picl (n-1) Loading package random-1.0.1.1 ... linking ... done.
Loading package containers-0.5.0.0 ... linking ... done.
Loading package pretty-1.1.1.@ ... linking ... done.

chessboard Int -> Picture Loading package template-haskell ... linking ... done.

_ Loading package QuickCheck-2.6 ... linking ... done.
chessboard n = alterV bw wb n where +++ 0K, passed 10@ tests.
bw = alterH bSq wSq n sMain>
wb = alter q bSq n
(][] (=]«

Ensure that the lower left square of

Exercise

chesboard n is always black.

4.4 Pattern matching

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front
with the “cons” operator (:) :: a -> [a] -> [a]

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality
[3] 3 : 11
(2, 3]

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality
[3] 3 : [
[2, 3] 2 :3:[]

(1, 2, 3]

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality
[3] 3 : 11
[2, 3] 2 :3:[]
[1, 2, 3] 1 :2:3:1[]
X1, «v.y Xnl

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality
[3] 3: 0
[2, 3] 2 :3: []
[1, 2, 3] 1 :2:3: [
[x1, ..., X5] X1 ... oxp o [

4.4 Pattern matching

Every list can be constructed from []
by repeatedly adding an element at the front

with the “cons” operator (:) :: a -> [a] -> [a]
syntactic sugar in reality
[3] 3 : 11
[2, 3] 2 :3:1[1
[1, 2, 3] 1:2:3:0
Da, ..., xu] X1 ¢ ... 1 xp o [

Note: x : y : 2zs = x : (y : zs)
(:) associates to the right

LS|

—
Every list is either

[1 or of the form

X . XS

S

—
Every list is either

[1 or of the form
X : xs where

x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

LS|

—
Every list is either

[1 or of the form
X : xs where

x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

[0 and (:) are called constructors
because every list can be constructed uniquely from them.

S

—
Every list is either

[1 or of the form
X : xs where

x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

[0 and (:) are called constructors
because every list can be constructed uniquely from them.

—
Every non-empty list can be decomposed uniquely into head and

tail.

LS|

—
Every list is either

[1 or of the form

x : xs where
x is the head (first element, Kopf), and
xs is the tail (rest list, Rumpf)

[0 and (:) are called constructors
because every list can be constructed uniquely from them.

—
Every non-empty list can be decomposed uniquely into head and

tail.

Therefore these definitions make sense:
head (x : xs8) = x
tail (x : xs) = xs

(++) is not a constructor:

(++) is not a constructor:
[1,2,3] is not uniquely constructable with (++):

(++) is not a constructor:
[1,2,3] is not uniquely constructable with (++):
(1,2,3] = [1] ++ [2,3] = [1,2] ++ [3]

(++) is not a constructor:
[1,2,3] is not uniquely constructable with (++):

[1,2,3] = [1] ++ [2,3] = [1,2] ++ [3]

Therefore this definition does not make sense:
nonsense (xs ++ ys) = length xs - length ys

=

|l WD)
Patterns
Patterns are expressions
(++) is not a constructor: consisting only of constructors and variables.
[1,2,3] is not uniquely constructable with (++):
[1,2,3] = [1] ++ [2,3] = [1,2] ++ [3]
Therefore this definition does not make sense:
nonsense (xs ++ ys) = length xs - length ys
o me

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

C
(#

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be

® a variable such as x or a wildcard _ (underscore)

C
(#

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be
e a variable such as x or a wildcard _ (underscore)

e 3 literal like 1, a’, "xyz",

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be
e a variable such as x or a wildcard _ (underscore)
e a literal like 1, ’a?, "xyz", ...

e atuple (p1, ..., pn) where each p; is a pattern

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be
e a variable such as x or a wildcard _ (underscore)
e a literal like 1, *a’, "xyz", ...
e atuple (p1, ..., pn) where each p; is a pattern

e a constructor pattern C p; ... p,
where C is a constructor and each p; is a pattern

Patterns

Patterns are expressions
consisting only of constructors and variables.
No variable must occur twice in a pattern.

— Patterns allow unique decomposition = pattern matching.

A pattern can be
® a variable such as x or a wildcard _ (underscore)
e a literal like 1, ’a?, "xyz", ...
e atuple (p1, ..., pn) where each p; is a pattern

e a constructor pattern C p; ... p,
where C is a constructor and each p; is a pattern

Note: True and False are constructors, tool!

Function definitions by pattern matching

Example

head :: [a] -> a
head (x :) = x

Function definitions by pattern matching

Example

head :: [a] -> a
head (x :) = x

tail :: [a] -> [a]
tail (_ : xs) = xs

(@] _ L :
Function definitions by pattern matching Function definitions by pattern matching
f pat; = ¢
Example :
f pat, = e,
head :: [a] -> a
head (x : _) = x
tail :: [a] -> [a]
tail (_ : xs) = xs
null :: [a] -> Bool
null [] = True
null (_ : _) = False
B _)@ _
Function definitions by pattern matching Function definitions by pattern matching
f paty = e f pat; = ¢
;‘pat,., = e, -fpat,, = e,

If £ has multiple arguments:

f paty1... patiyxy = e

If f has multiple arguments:

f patiy... patiyx = e

Conditional equations:

f patterns | condition = e

When f is called, the equations are tried in the given order

m@

Function definitions by pattern matching

Example (contrived)

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool] -> Bool

truel2 (True : True : _) = True truel2 (True : True : _) = True
truel2 _ = False truel2 _ = False
samel2 (x :) (_:y :) = x==y3y
=)@ =&

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool]l -> Bool
truel2 (True : True : _) = True
truel2 _ = False

samel2 :: Eq a => [a] -> [a] -> Bool
samel2 (x :) (L :y :) = x==y35

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool] -> Bool

truel2 (True : True : _) = True
truel2 _ = False

samel2 :: Eq a => [a] -> [a] -> Bool
samel2 (x :) (_:y :) = x==y3y

asc3 (x 1y 1z : _) = X<y&&y<z

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool] -> Bool
truel2 (True : True : _) = True
truel?2 = False

samel2 :: Eq a => [a] -> [a] -> Bool

samel2 (x :) (L :y :) = x==y35
asc3 (x 1y :z:) = x<y&&y<z
asc3 (x 1y :) = x<y

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool] -> Bool

truel2 (True : True : _) = True
truel2 _ = False

samel2 :: Eq a => [a] -> [a] -> Bool
samel2 (x :) (_:y :) = x==y3y
asc3 (x 1y 1z : _) = X<y&&y<z
asc3 (x 1y :) = x<y

asc3 _ = True

Function definitions by pattern matching

Example (contrived)

truel2 :: [Bool]l -> Bool
truel2 (True : True : _) = True
truel2 _ = False

samel2 :: Eq a => [a] -> [a] -> Bool

samel2 (x :) (L :y :) = x==y35
asc3 :: Ord a => [a] -> Bool

asc3 (x 1y :z:) = x<y&&y<z
asc3 (x 1y :) = x<y

asc3 _ = True

4.5 Recursion over lists

4.5 Recursion over lists 4.5 Recursion over lists
Example Example
length [] = 0 length [] = 0
length (_ : xs) = length xs + 1
reverse [] = []
o aQ
4.5 Recursion over lists
Example Primitive recursion on lists:
length [] = 0 f [= base -— base case
length (_ : xs) = f (x : xs) = rec -- recursive case

reverse []
reverse (x : xs)

length xs + 1

(]

e base: no call of f

Primitive recursion on lists:

f 0

f (x :

= base -- base case

XS) = rec -— recursive case

e base: no call of f

e rec: only call(s) f xs

Primitive recursion on lists:

f [= base

f (x : xs) = rec

-- base case
-— recursive case

e base: no call of f

e rec: only call(s) f xs

f may have additional parameters.

Example

concat ::
concat []

Finding primitive recursive definitions

(lal]l -> [a]
= 0

O |
Finding primitive recursive definitions
Example
concat :: [[a]] -> [a]
concat [] = []
concat (xs : xss) = Xs ++ concat xss

inSort (x:xs) (inSort xs)

inSort (x:xs) =

ins x (inSort xs)

ins :: a -> [a] -> [al

ins x [1 = [x]
ins x (y:ys)

(m)] (m)«]
Finding primitive recursive definitions Insertion sort
Example Example
concat :: [[a]]l -> [a] inSort :: [a] -> [a]
concat [] = [] inSort [] = []
concat (xs : xss) = Xs ++ concat xss inSort (x:xs) =
(++) :: [a] -> [a] -> [a]
[0 ++ys = ys
DS E &
Insertion sort Insertion sort
Example Example
inSort :: [a] -> [a] inSort :: [a] -> [a]
inSort [] = [] inSort [] = []

Insertion sort

Insertion sort

Example Example
inSort :: [a] -> [a] inSort :: [a] -> [a]
inSort [] = [] inSort [] = []
inSort (x:xs) = ins x (inSort xs) inSort (x:xs) = ins x (inSort xs)
ins :: a -> [a] -> [a] ins :: a -> [a] -> [al
ins x [1 = [x] ins x [1 = [x]
ins x (y:ys) | x <=y = ins x (y:ys) | x <=y = X :y :ys
| otherwise =
mle)]

Insertion sort

Example

inSort :: [a] -> [a]

inSort [] = [

inSort (x:xs) = ins x (inSort xs)

ins :: a -> [a] -> [a]

ins x [1 = [x]

ins x (y:ys) | x <=y = X :y:ys

| otherwise y : ins x ys

Beyond primitive recursion: Complex patterns

Example

ascending :: Ord a => [a] -> bool
ascending [] = True

ascending [_] = True

ascending (x : y : zs) =

o

Beyond primitive recursion: Complex patterns

Beyond primitive recursion: Multiple arguments

Example Example
ascending :: Ord a => [a] -> bool zip :: [a] -> [b] -> [(a,b)]
ascending [] = True zip (x:xs) (y:ys) = (x,y) : zip xs ys
ascending [_] = True
ascending (x : y : zs) = x <=y && ascending (y : ys)
m) s

Beyond primitive recursion: Multiple arguments

Example

zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ =

Beyond primitive recursion: Multiple arguments

Example

zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

=& =&

Beyond primitive recursion: Multiple arguments Beyond primitive recursion: Multiple arguments
Example Example
zip :: [a]l -> [b] -> [(a,b)] take :: Int -> [a] -> [a]
zip (x:xs) (y:ys) = (x,y) : zip xs ys take 0 _ = []
zip _ _ = [take _ [] = 1[I

Alternative definition:

zip> 1 OO0 = [
zip’ (x:xs) (y:ys) = (x,y) : zip’ xs ys

zip? is undefined for lists of different length!

#® Adobe Reader File Edit View Window Help @D <>y 8 =) & Fileg Q =

@@ @@J I - || slides.pdf :
— General recu rS|On QUICkSOI’t 7 upen ‘ &0 ZFa B = ‘) (572 of 618) | ‘ Iz‘ = Tools | Fill & Sign ; Comment
) @ ‘Bﬂnkmarks [«]

= =
: [F Organisatorische
Example & s Beyond primitive recursion: Multiple arguments

[P Functional
Programming:

. _ The Idea

quicksort :: Ord a => [a] -> [a] [P Basic Haskell Example

[P Lists

take :: Int -> [a] -> [al

take 0 _ = []
take _ [1 = [I
take i (x:xs) | i>0 = x : take (i-1) xs

® Terminal

800

Shell Edit View Window Help = @D <>y F

Phvsis
(7] Code — ghc — 76x24

= 4) @& Fri10:09 Q

® Terminal

8 00

Shell Edit View Window Help E @ D <> 2 = 4) @ File:0y Q =

Phvsis
(7] Code — ghc — 76x24

pr pic =

—— Chess

GHCi, ve
Loading
Loading
Loading
Prelude>
[1 of 1]
0k, modu
*Main> q
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
+++ 0K,
*Main>

putStr(render pic)

boards

lapnipkowld:Code nipkow$ ghci
rsion 7.6.3: http://www.haskell.org/ghc/ :? for help

package ghc-prim ... linking ... done.
package integer-gmp ... linking ... done.
package base ... linking ... done.

:1 Pictures

Compiling Main (Pictures.hs, interpreted)

les loaded: Main.
uickCheck prop_aboveFlipV

package array-9.4.9.1 ... linking ... done.
package deepseg-1.3.9.1 ... linking ... done.
package old-locale-1.0.0.5 ... linking ... done.
package time-1.4.0.1 ... linking ... done.
package random-1.0.1.1 ... linking ... done.
package containers-0.5.0.0 ... linking ... done.
package pretty-1.1.1.0 ... linking ... done.
package template-haskell ... linking ... done.
package QuickCheck-2.6 ... linking ... done.

passed 100 tests.

pr pic =
—— Chess

lapnipko
GHCi, ve
Loading
Loading
Loading
Prelude>
[1 of 1]
0k, modu
*Main> q
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
+++ 0K,
*Main>

putStr(render pic)
boards

wld:Code nipkow$ ghci

rsion 7.6.3: http://www.haskell.org/ghc/ :7 for help
package ghc-prim ... linking ... done.
package integer—-gmp ... linking ... done.
package base ... linking ... done.

:1 Pictures

Compiling Main (Pictures.hs, interpreted)
les loaded: Main.
uickCheck prop_aboveFlipV
package array-0.4.0.1 ... linking ... done.
package deepseq-1.3.0.1 ... linking ... done.
package old-locale-1.0.0.5 ... linking ... done.
package time-1.4.0.1 ... linking ... done.
package random-1.0.1.1 ... linking ... done.
package containers-0.5.0.0 ... linking ... done.
package pretty-1.1.1.8 ... linking ... done.
package template-haskell ... linking ... done.
package QuickCheck-2.6 ... linking ... done.

passed 100 tests.

