SRS

Script generated by TTT

Title: Nipkow: FDS (15.07.2020)

Date: Wed Jul 15 17:43:08 CEST 2020
Duration: 40:32 min

Pages: 81

One by one (Union)

Let ¢(z) = cost of adding 1 element to set of size z
Cost of adding m elements to a set of n elements:

cn)+---+cn+m-—1)

& TIT D % WO A W) 9% (@ Wed17:43 TobiasNipkow Q @ i=

@® Union, Intersection, Difference on BSTs

One by one (Union)

Let ¢(x) = cost of adding 1 element to set of size x
Cost of adding m elements to a set of n elements:
cn)+---+cn+m—1)

= choose m < n = smaller into bigger

One by one (Union) One by one (Union)

Let ¢(x) = cost of adding 1 element to set of size x Let ¢(x) = cost of adding 1 element to set of size x

Cost of adding m elements to a set of n elements: Cost of adding m elements to a set of n elements:
cn)+---+cn+m-—1) cn)+---+cn+m—1)

—> choose m < n = smaller into bigger —> choose m < n = smaller into bigger

If c(z) = logyz = If c(z) = logyz =

Cost = O(m x logy(n +m)) Cost = O(m = logy(n +m)) = O(m x logyn)

Similar for intersection and difference.

e We can do better than O(m x log, n) e We can do better than O(m x log,n)

e Flatten trees to lists, merge, build balanced tree
takes time O(m + n)

We can do better than O(m * log, n)

Flatten trees to lists, merge, build balanced tree
takes time O(m + n) — better than O(m * log, n)
if m~n

We can do better than O(m * log, n)

Flatten trees to lists, merge, build balanced tree
takes time O(m + n) — better than O(m * log, n)
ifm~n

This chapter:
A parallel divide and conquer approach
Cost: O(m * logy (£ + 1))

m

We can do better than O(m * log, n)

Flatten trees to lists, merge, build balanced tree
takes time O(m + n) — better than O(m * log, n)
if m~n

This chapter:
A parallel divide and conquer approach

128

We can do better than O(m * log, n)

Flatten trees to lists, merge, build balanced tree
takes time O(m + n) — better than O(m x log, n)
ifm=~n

This chapter:
A parallel divide and conquer approach
Cost: O(m *logy(& +1))

Works for many kinds of balanced trees

128

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with ‘b-augmented trees:

("a x 'b) tree

We work with this type of trees without committing to
any particular kind of balancing schema.

Uniform tree type Uniform tree type

Red-Black trees, AVL trees, weight-balanced trees, etc
can all be implemented with 'b-augmented trees:

(‘a x 'b) tree

We work with this type of trees without committing to

any particular kind of balancing schema.
In this chapter: tree abbreviates (‘a x 'b) tree

Uniform tree type

We can do better than O(m * log, n)
Flatten trees to lists, merge, build balanced tree
takes time O(m + n) — better than O(m * logy n) Red-Black trees, AVL trees, weight-balanced trees, etc
ifm=~n can all be implemented with ‘b-augmented trees:
This chapter: (‘a x 'b) tree

A parallel divide and conquer approach
Cost: ©(m xlogy(& + 1))
Works for many kinds of balanced trees
For ease of presentation: use concrete type tree

130 130

Just join

Can synthesize all BST interface functions from just one
function:

joinlar

131

Just join

Can synthesize all BST interface functions from just one
function:

joinlar ~ (I (a, _), r) + rebalance

131

Just join

Can synthesize all BST interface functions from just one
function:

joinlar ~ (I (a,), 1)

131

l\
m\

Just join

Can synthesize all BST interface functions from just one
function:

joinlar ~ (I, (a, _), r) + rebalance

Thus join determines the balancing schema

131

Just join

Given join :: tree = 'a = tree = tree
we implement

split =z tree = 'a = tree x bool X tree

Just join

Given join :: tree = 'a = tree = tree
we implement

insert :: 'a = tree = tree
delete :: 'a = tree = tree
union :: tree = tree = tree
nter i tree = tree = tree
diff :: tree = tree = tree

132

split :: tree = 'a = tree x bool X tree
split () « = ({), False, ())

133

split =2 tree = 'a = tree X bool X tree
split () = = ((), False, ())
split (I, (a,), 1) © =

I

split =z tree = 'a = tree x bool X tree

split () = ((), False, ())
split (I, (a,), 1) © =
(case cmp x a of
LT = let (I, b, k) = split [z in

133

split =2 tree = 'a = tree X bool X tree
split () = = ((), False, ())

split (I, (a, _),) x =

(case cmp z a of

133

split :: tree = 'a = tree x bool X tree

split () @ = ({), False, {))
split (I, (a, =), 1) © =
(case cmp x a of
LT = let (I, b, k) = split l zin (i, b, join b a 1) |

133

split =2 tree = 'a = tree X bool X tree

split () z = ({), False, ())

split (I, (a,), 1) © =

(case cmp x a of
LT = let (I, b, k) = split L zin (L, b, joinl ar) |
EQ =

133

split =z tree = 'a = tree x bool X tree

split () x = ((), False, ())

split (I, (a, =), 1) =

(case cmp x a of
LT = let (I, b, k) = split L zin (I, b, joinlp a) |
EQ = (I, True, 1) |
GT = let (1, b, r2) = split r zin (join [a 1y, b, 1))

insert 1 'a = tree = tree

insert x t = (let (I, _, r) = split t x in

133

split :: tree = 'a = tree x bool X tree

split () = = ((), False, ())

split (I, (a, _),) x =

(case cmp z a of
LT = let (I, b, k) = split l zin (4, b, join kb a 1) |
EQ = (1, True, 1) |
GT = let (11, b,) = split r zin (join | a 1, b, 1))

insert » 'a = tree = tree

msert x t =

133

split_min :: tree = 'a X tree

134

split_min :: tree = 'a X tree split_min :: tree = 'a X tree
split-min (I, (a,), 1) = split_min (I, (a,), 1) =
(if I = () then (a, r) else
let (m, I') = split_min [in
A H A
split_min :: tree = 'a X tree split_min :: tree = 'a X tree
split-min (I, (a, -), 1) = split-min (I, (a, _), 1) =
(if I = () then (a, r) else (if 1= () then (a, r) else
let (m, I") = split-min lin (m, join " a r) let (m, I') = split_min lin (m, join " a r)
join2 :: tree = tree = tree join2 :: tree = tree = tree

join2 I r=
(if = () then [
else let (m, ') = split-min rin

134 134

split_min :: tree = 'a X tree

split-min (I, (a,), 1) =
(if I = () then (a, r) else
let (m, I") = split-min lin (m, join " a r)

join2 :: tree = tree = tree

join2 [r=
(if 7= () then [
else let (m, 1) = split-min rin join [m r’)

split_min :: tree = 'a X tree
split-min (I, (a, -), 1) =

(if 1= () then (a, 1) else
let (m, I") = split-min lin (m, join " a r)

join2 :: tree = tree = tree

join2 [r =
(if = () then [
else let (m, ') = split-min rin join [m r’)

delete :: 'a = tree = tree

delete x t = (let (I, , r) = split t z in join2 [1)

split_min :: tree = 'a X tree

split_min (I, (a,), 1) =

(if 1= () then (a, r) else

let (m, I') = split_min lin (m, join " a r)

join2 :: tree = tree = tree

join2 [r=
(if = () then [
else let (m, ') = split-min rin join [m r’)

delete :: 'a = tree = tree
delete x t = (let (I, _, r) = split t x in

134

union :: tree = tree = tree
union t; ty =

(if & = () then ¢, else

if o = () then ¢, else

135

union . tree = tree = tree
unton t) & =
(if &, = () then t, else
if & = () then t; else
case t; of
<Zl, (a, _), ’/’1> =

union . tree = tree = tree
union ty tnh =
(if &1 = () then ¢, else
if o = () then ¢, else
case t; of
<ll, (a, _), T‘1> =
let (b, -, ™) = split ty
I' = union [b;
r' = union r ™

135

union . tree = tree = tree
union t; th =
(if &y = () then t, else
if & = () then ¢ else
case t; of
<ll, (CL, _)7 7‘1> =
let (b, _, 1) = split t a

135

union :: tree = tree = tree
union t; ty =
(if & = () then ¢, else
if o = () then ¢, else
case t; of
<ll, (a, _), 7"1> =
let (b, _, ™) = split t,
' = union l; b;
r’ = union 1 1™
in join " a 1)

inter ;. tree = tree = tree

nter 4 tp =
(if &, = () then () else
if & = () then () else

inter . tree = tree = tree
nter 4 o =
(if &1 = () then () else
if o = () then () else
case t; of
<ll, (a, _), T‘1> =
let (b, ain, 1) = split ty a;

136

inter . tree = tree = tree
mter t) & =

(if &1 = () then () else

if & = () then () else

case t; of
<llv <a7 —)7 7“1> =

136

inter i tree = tree = tree

mter 4 th =
(if & = () then () else
if o = () then () else
case t; of
<ll, (a, _), 7"1> =
let (b, ain, 1) = split t a;
' = inter I b;
r’ = inter r; m

136

inter . tree = tree = tree
nter 4 tp =
(if &, = () then () else
if & = () then () else
case t; of
<Zl, (a, _), ’/’1> =
let (k, ain, 1) = split 1y a;
I'= inter lj by;
r' = inter r|
in if ain then join " a 1/

diff :: tree = tree = tree

diff t| ty =
(if & = () then () else

137

diff .. tree = tree = tree

diff t t, =

(if t; = () then () else
if o = () then ¢, else
case tp of

(b, (a, 2), o) =

diff .. tree = tree = tree
diff t, to, =

(if &, = () then () else

if o = () then ¢, else

case tp of
<127 (a’ —)7 T2> =

let (b, -, m) = split t «

137

diff :: tree = tree = tree
diff t; ty =
(if &1 = () then () else
if o = () then t; else
case ty of
<ZQ, (CL, _), ’f’2> =
let (b, -, m) = split t «;
l/ = dlﬁ l] ZQ;
= diff m
in join2 1" 1)

diff :: tree = tree = tree
diff t| ty =
(if & = () then () else
if o = () then t; else
case ty of
<12, (a, _), 7‘2> =
let (b, -, m) = split t «
l/ = dlff ll ZQ;
= diff r
in join2 ' 1)

Why this way around: t /7

137

@® Union, Intersection, Difference on BSTs

Correctness

Specification of join

o set_tree (join | a r) = set_tree [U {a} U set_tree r

138

139

Specification of join

o set_tree (join l a r) = set_tree [U {a} U set_tree r
e bst(l, (a, b), r) =
bst (join | a 1)

139

Specification of join and inv

e set_tree (join | a r) = set_tree [U {a} U set_tree r
e bst (I, (a, b), r) =
bst (join l a 1)

Also required: structural invariant inuw:
e inv ()

e v (l, (a, b),) = vl A invr

139

Specification of join and inv

o set_tree (join | a r) = set_tree [U {a} U set_tree r
e bst (l, (a, b), r) =
bst (join I a)

Also required: structural invariant inw:

139

Specification of join and inv

o set_tree (join | a r) = set_tree [U {a} U set_tree r
e bst (l, (a, b), r) =
bst (join | a)

Also required: structural invariant inuw:
® inv ()
e v (l, (a, b),) = v I A invr
e [inv l; inv 1] = inv (join l a 1)

139

Specification of join and inv

o set_tree (join l a r) = set_tree [U {a} U set_tree r
e bst(l, (a, b), r) =
bst (join | a 1)
Also required: structural invariant nw:
® inv ()
e v (l, (a, b),) = vl A invr
e [inv [, inv 1] = inv (join L a 1)

Locale context for def of union etc

139

Specification of union, inter, diff

ADT /Locale Set2 = extension of locale Set with
® union, inter, diff :: 's = 's = s
o [invar si; invar s
= set (union s; $y) = set s U set s

140

Specification of union, inter, diff

ADT /Locale Set2 = extension of locale Set with
® union, inter, diff :: 's = 's = 's

140

l\
U\

Specification of join and inv

o set_tree (join | a r) = set_tree [U {a} U set_tree r
e bst (l, (a, b), r) =
bst (join | a)
Also required: structural invariant inuw:
® inv ()
e v (l, (a, b),) = v I A invr
e [inv l; inv 1] = inv (join l a 1)

Locale context for def of union etc

139

Correctness lemmas
for union etc code

Specification of union, inter, diff

ADT /Locale Set2 = extension of locale Set with

o umon inter, diff = 's = 's = s In the context of join specification:
® hst ty —

e [invar si; invar s
set_tree (union t; to) = set_tree t; U set_tree ty

.@ AL XSS

141

Correctness lemmas
for union etc code

Specification of union, inter, diff

ADT /Locale Set2 = extension of locale Set with
® union, inter, diff :: 's = 's = s
o [invar si; invar s
= set (union s; $y) = set s U set s

In the context of join specification:
® hst thhy —
set_tree (union t; ty) = set_tree t; U set_tree ty
o [bst ty; bst t;] = bst (union t; ty)
e [inv t1; inv o] = inv (union t; ty)
Proofs automatic (more complex for inter and diff)

o [invar si; invar so] = invar (union s sz)
e . _inter...

o . diff...

We focus on union.

See HOL/Data_Structures/Set_Specs.thy

H &
vrLer ...
. ...dz’ﬁ...
140
U\

140

141

Correctness lemmas
for union etc code

In the context of join specification:
® hst by =
set_tree (union t1 tg) = set_tree t; U set_tree to
o [bst ti; bst ta] = bst (union t; to)
o [inv ty; inv t] = inv (union t; ty)
Proofs automatic (more complex for inter and diff)

Implementation of locale Set2:
interpretation Set2 where union = union . ..

HOL/Data_Structures/
Set2_Join.thy

Correctness lemmas
for union etc code

In the context of join specification:

® hst ty —
set_tree (union t; ty) = set_tree t; U set_tree ty

o [bst ty; bst t;] = bst (union t; t)
e [inv ti; inv t] = inv (union t; tz)
Proofs automatic (more complex for inter and diff)

Implementation of locale Set2:

interpretation Set2 where union = union . ..
and set = set_tree and invar = (\t. bst t A inv t)

@® Union, Intersection, Difference on BSTs

Join for Red-Black Trees

jgoin | a r— The idea jgotn | a r— The idea

Assume [is “smaller” than r: Assume [is “smaller” than r:
® Descend along the left spine of r

until you find a subtree ¢ of the same “size” as :

® Descend along the left spine of r
until you find a subtree ¢ of the same “size” as [:

VY

l t

I

[t

® Replace t by (l,a,t).

144

jgoin | a r— The idea jgoin | a r— The idea
Assume [is “smaller” than r: Assume [is “smaller” than r:
® Descend along the left spine of r
until you find a subtree ¢ of the same “size” as [:

join lxr=
(if bheight r < bheight |
then paint Black (joinR | x)
else if bheight | < bheight r
then paint Black (joinL | x 1) else B[z r)

HOL/Data_Structures/
Set2_Join_RBT.thy

146

joinlxr=
(if bheight r < bheight |
then paint Black (joinR | z r)
else if bheight | < bheight r
then paint Black (joinL L x 1) else B[z)

Need to store black height in each node
for logarithmic complexity

145

HOL/Data_Structures/
Set? JToin RRT.thv

- i
B 4Bk X&@

146

join lxr=
(if bheight r < bheight |
then paint Black (joinR | x)
else if bheight | < bheight r
then paint Black (joinL | x 1) else B[z r)

Need to store black height in each node
for logarithmic complexity

Literature

The idea of “just join":
Stephen Adams. Efficient Sets — A Balancing Act.
J. Functional Programming, volume 3, number 4, 1993.

The precise analysis:

Guy E. Blelloch, D. Ferizovic, Y. Sun.

Just Join for Parallel Ordered Sets.

ACM Symposium on Parallelism in Algorithms and
Architectures 2016.

147

