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Numerical method

only use trees ¢; of size 2°
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Numerical method

Idea: only use trees t; of size 2

Numerical method

Idea: only use trees t; of size 2

Example
To store (in binary) 11001 elements: [#,0,0,t3,14]

Numerical method

|dea: only use trees t; of size 2

Example
To store (in binary) 11001 elements: [#,0,0,%3,%]

Merge ~ addition with carry

Numerical method

Idea: only use trees ¢; of size 2°

Example
To store (in binary) 11001 elements: [t,,0,0,t3,%]

Merge ~ addition with carry
Needs function to combine two trees of size 2¢
into one tree of size 21!
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Binomial tree Binomial tree

datatype 'a tree =
Node (rank: nat) (root: 'a) ('a tree list)

datatype 'a trec =
Node (rank: nat) (root: 'a) ('a tree list)

Invariant: Node of rank 7 has children [t._1,. .. t]

Invariant: Node of rank r has children [t._1,... %]
of ranks [r—1,...,0]

of ranks [r—1,...,0]

invar_btree (Node r x ts) =

invar_btree (Node 1 z ts) =
((V teset ts. invar_btree t) N\ map rank ts = rev [0..<7])

((V teset ts. invar_btree t) A map rank ts = rev [0..<1])

Lemma
invar_btree t = [t| = 2m"k1

Binomial tree Binomial tree
datatype 'a tree = datatype 'a treec =
Node (rank: nat) (root: 'a) ('a tree list) Node (rank: nat) (root: 'a) ('a tree list)
Invariant: Node of rank r has children [t._1,. .. t)]
of ranks [r—1,...,0]
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Binomial tree

datatype 'a tree =
Node (rank: nat) (root: 'a) ('a tree list)

Invariant: Node of rank  has children [t._1,. .. f]
of ranks [r—1,...,0]

Numerical method

Idea: only use trees t; of size 2

Example
To store (in binary) 11001 elements: [#,0,0,t3,14]
Merge ~ addition with carry

Needs function to combine two trees of size 2!
into one tree of size 2¢*1!

Combining two trees

How to combine two trees of rank i
into one tree of rank i+1

Binomial tree

datatype 'a trec =
Node (rank: nat) (root: 'a) ('a tree list)
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Binomial heap

Use sparse representation for binary numbers:
[t0,0,0,13,14] represented as [ (0,ty), (3,t3),(4,t1) |

214

Binomial heap

Use sparse representation for binary numbers:
[t9,0,0,13,4] represented as [ (0,%), (3,3),(4,t1) |

type_synonym 'a heap = 'a tree list

Remember: tree contains rank
Invariant:

ivar_bheap ts =
((V teset ts. invar_btree t) A
sorted_wrt (<) (map rank ts))
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Binomial heap

Use sparse representation for binary numbers:
[t0,0,0,13,t4] represented as [ (0,ty), (3,3),(4,t1) |

type_synonym ’a heap = 'a tree list

Remember: tree contains rank

Inserting a tree

ins_tree t [| = [{]

ins_tree t) (ty # ts) =

(if rank t; < rank ty then t, # t # ts
else ins_tree (link t; t3) 1s)



Inserting a tree

ins_tree t [| = [{]

ins_tree t; (ty # ts) =

(if rank t; < rank ty then t, # t # ts
else ins_tree (link t; t2) ts)

Intuition: Handle a carry

Precondition:
Rank of inserted tree < ranks of trees in heap

merge ts; [| =
merge || tsy =

merge

tSl
tSQ

merge (41 # ts1) (b # 1s2) =
(if rank t; < rank t, then t; # merge ts; (ty # ts7)

else if rank t

< rank t; then ty # merge (t; # ts1) ts

else ins_tree (link t; 1) (merge ts; tsy))
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merge

merge ts; [| = ts
merge [| tsy = tso
merge (t # ts1) (o # ts2) =

(if rank t; < rank ty then t; # merge ts; (ty # ts2)

Get/delete minimum element
All trees are min-heaps.

else if rank ty < rank t; then ty # merge (t, # ts1) tso

else ins_tree (link t; t) (merge ts; ts2))

Intuition: Addition of binary numbers
Note: Handling of carry after recursive call
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merge Get/delete minimum element
All trees are min-heaps.

Smallest element may be any root node:
merge ts; [| = ts; , :
merge [ tsy = ts, ts # [| = get-min ts = Min (set (map root ts))

merge (ty # ts1) (ty # ts2) =

(if rank t; < rank t, then t; # merge ts; (& # tso)

else if rank ty < rank t; then to # merge (ty # ts1) tso
else ins_tree (link t; t) (merge ts; tsy))

Intuition: Addition of binary numbers
Note: Handling of carry after recursive call
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Get/delete minimum element Get/delete minimum element
All trees are min-heaps. All trees are min-heaps.
Smallest element may be any root node: Smallest element may be any root node:
ts # [| = get-min ts = Min (set (map root ts)) ts # [| = get-min ts = Min (set (map root ts))
Similar: Similar:

get_min_rest :: 'a tree list = 'a tree X 'a tree list
Returns tree with minimal root, and remaining trees

get_min_rest :: 'a tree list = 'a tree x 'a tree list
Returns tree with minimal root, and remaining trees

del_min ts =
(case get_min_rest ts of
(Node r z tsy, tso) = merge (rev ts) tsy)

Why rev?
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Get/delete minimum element
All trees are min-heaps.
Smallest element may be any root node:

ts # [| = get-min ts = Min (set (map root ts))

Similar:
get_min_rest :: 'a tree list = 'a tree X 'a tree list
Returns tree with minimal root, and remaining trees

del_min ts =
(case get-min_rest ts of
(Node 1 z ts1, ts2) = merge (rev ts)) tsy)

Why rev? Rank decreasing in ts; but increasing in tso

Complexity

Recall: |f] = grank t

Complexity

Recall: [#| = orank t
Similarly for heap: olength ts < lts| + 1

Complexity

Recall: [t| = 2rank?
Similarly for heap: 29t ts < |ts| 4 1
Complexity of operations: linear in length of heap

218 218



Complexity of merge Complexity

merge (L # ts1) (b # ts2) =

(if rank t; < rank ty then t; # merge ts; (ty # ts2)

else if rank ty < rank t; then ty # merge (t; # ts1) tso
else ins_tree (link t; t) (merge ts; tsy))

Recall: [t| = 2rank?
Similarly for heap: 29t ts < |ts| 4 1
Complexity of operations: linear in length of heap

Complexity of ins_tree: t_ins_tree t ts < length ts + 1 i.e., logarithmic in number of elements

Proofs: straightforward?

218

Complexity Complexity of merge
merge (ty # ts1) (to # tso) =
— (if rank t; < rank ty then t; # merge ts) (ty # ts2)
Recall: |#] = 2 else if rank ty < rank t; then ty # merge (&, # ts1) tso
Similarly for heap: 2/ < |15 + 1 else ins_tree (link t; 1) (merge ts; tsy))
Complexity of operations: linear in length of heap
i.e., logarithmic in number of elements
Proofs:
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Inserting a tree

ins_tree t || = [t]

ins_tree ty (ty # ts) =

(if rank t; < rank ty then t, # t, # ts
else ins_tree (link t; t5) ts)

Intuition: Handle a carry

215

Complexity of merge

merge (t # ts1) (ta # 1s2) =

(if rank t; < rank ty then t; # merge ts; (ty # ts2)

else if rank ty < rank t; then ty # merge (t, # ts)) tso
else ins_tree (link t; t) (merge ts; tsy))

Relate time and length of input/output:
t_ins_tree t ts + length (ins_tree t ts) = 2 + length ts

length (merge ts; tsy) + t-merge ts; tso
< 2 x (length ts; + length tsy) + 1
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Complexity of merge

merge (ty # ts1) (to # tso) =

(if rank t; < rank ty then t; # merge ts) (ty # ts2)

else if rank ty < rank t; then ty # merge (&, # ts1) tso
else ins_tree (link t; 1) (merge ts; tsy))

Complexity of ins_tree: t_ins_tree t ts < length ts + 1

A call merge t; t; (where length t, = length t, = n) can
lead to calls of ins_tree on lists of length 1, ..., n.

Y € O(n?)
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Complexity of merge

merge (4 # ts1) (b # 1s2) =

(if rank t; < rank ty then t; # merge ts; (ty # ts2)

else if rank ty < rank t; then &y # merge (&, # ts1) tso
else ins_tree (link t; 1) (merge ts; tsy))

Relate time and length of input/output:
t_ins_tree t ts + length (ins_tree t ts) = 2 + length ts

length (merge ts; tsy) + t-merge tsy tsy
< 2 x (length ts; + length tsy) + 1
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Complexity of merge

merge (t; # ts1) (to # ts2) =
(if rank t; < rank ty then t; # merge ts; (ty # ts2)

Sources

The inventor of the binomial heap:

else if rank ty < rank t; then ty # merge (t, # ts1) tso Jean Vuillemin.

else ins_tree (link t; t) (merge ts; tsy))

Relate time and length of input/output:
tuins_tree t ts + length (ins_tree t ts) = 2 + length ts

length (merge ts; tsy) + t-merge ts; tsy
< 2 x (length ts; + length tsy) + 1

Yields desired linear bound!

A Data Structure for Manipulating Priority Queues.

CACM, 1978.

The functional version:

Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.
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@® Skew Binomial Heap

221

Priority queues so far

insert, del_min (and merge)
have logarithmic complexity

222
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Skew Binomial Heap

Similar to binomial heap, but involving also
skew binary numbers:

Skew Binomial Heap

Similar to binomial heap, but involving also
skew binary numbers:

dy...d, represents > I d; x (271 — 1)
where d; € {0, 1,2}

224

Complexity

Skew binomial heap:

insert in time O(1)
del_min and merge still O(logn)
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Complexity

Skew binomial heap:
insert in time O(1)
del_min and merge still O(logn)
Fibonacci heap (imperative!):

insert and merge in time O(1)
del_min still O(logn)
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Complexity

Skew binomial heap:
insert in time O(1)
del_min and merge still O(logn)
Fibonacci heap (imperative!):

insert and merge in time O(1)
del_min still O(logn)

Every operation in time O(1)?

) Amortized Complexity
& Skew Heap

@& Splay Tree

#® Pairing Heap

# More Verified Data Structures and Algorithms
(in Isabelle/HOL)

228

Puzzle

Design a functional queue
with (worst case) constant time eng and deg functions

226

) Amortized Complexity
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Example

n increments of a binary counter starting with 0

Example

n increments of a binary counter starting with 0

e \WCC of one increment?

WCC = worst case complexity

Example

n increments of a binary counter starting with 0

e WCC of one increment? O(log,n)

WCC = worst case complexity
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Example

n increments of a binary counter starting with 0

e WCC of one increment? O(log,n)
e WCC of n increments? O(n *log,n)

WCC = worst case complexity
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Example

n increments of a binary counter starting with 0

WCC of one increment? O(log,n)
WCC of n increments? O(n x log,n)

O(n *log, n) is too pessimistic!

Every second increment is cheap and compensates
for the more expensive increments

WCC = worst case complexity

The problem

WCC of individual operations
may lead to overestimation of
WCC of sequences of operations

232

Example

n increments of a binary counter starting with 0

WCC of one increment? O(log,n)
WCC of n increments? O(n * log,n)

O(n *log,n) is too pessimistic!

Every second increment is cheap and compensates
for the more expensive increments

e Fact: WCC of n increments is O(n)

WCC = worst case complexity

231

l\
m\

Amortized analysis
Idea:

Try to determine the average cost of each operation
(in the worst case!)

Use cheap operations to pay for expensive ones

233



Amortized analysis
ldea:

Try to determine the average cost of each operation
(in the worst case!)

Use cheap operations to pay for expensive ones

Method:

e Cheap operations pay extra (into a “bank
account” ), making them more expensive

Amortized analysis
Idea:
Try to determine the average cost of each operation

(in the worst case!)

Use cheap operations to pay for expensive ones

Method:

e Cheap operations pay extra (into a “bank
account” ), making them more expensive

e Expensive operations withdraw money from the
account, making them cheaper

Bank account = Potential

Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the
data structure.

e Potential ® :: data-structure = non-neq. number
tells us how much credit is stored in a data structure

234 234



Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the
data structure.

e Potential ® :: data-structure = non-neg. number
tells us how much credit is stored in a data structure

® |ncrease in potential =
deposit to pay for /ater expensive operation

Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the

data structure.

e Potential ® :: data-structure = non-neg. number

tells us how much credit is stored in a data structure

® |ncrease in potential =

deposit to pay for /ater expensive operation

® Decrease in potential =

withdrawal to pay for expensive operation

234

Bank account = Potential

® The potential (“credit”) is implicitly “stored” in the
data structure.

e Potential ® :: data-structure = non-neg. number

tells us how much credit is stored in a data structure

Increase in potential =

deposit to pay for later expensive operation

Decrease in potential =
withdrawal to pay for expensive operation

Back to example: counter

Increment:
e Actual cost: 1 for each bit flip



Back to example: counter

Increment:

® Actual cost: 1 for each bit flip
e Bank transaction:
® pay in 1 for final 0 — 1 flip

Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip
® take out 1 for each 1 — O flip

Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® pay in 1 for final 0 — 1 flip

® take out 1 for each 1 — 0 flip

= increment has amortized cost 2 = 1+1

Back to example: counter

Increment:

e Actual cost: 1 for each bit flip
e Bank transaction:

® payin 1 for final 0 — 1 flip
® take out 1 for each 1 — O flip

=— increment has amortized cost 2 = 1+1
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Given an implementation:

® Type T

® Operation(s) fr:7 =T

Data structure

Data structure
Given an implementation:
e TypeT
e Operation(s) f=: 7 = T
(may have additional parameters)
e Initial value: wnit :: 7
(function “"empty”)
Needed for complexity analysis:
e Time/cost: t_f:: 7 = num

2

@
2

Given an implementation:

® Type T

e Operation(s) f=: 7 = 7
(may have additional parameters)

e Initial value: init :: 7
(function “empty”)

Data structure

Needed for complexity analysis:
e Time/cost: t_f:: T = num
(num = some numeric type

nat may be inconvenient)

e Potential ¢ ::

T = num

237

Data structure
Given an implementation:
® TyperT
e Operation(s) f= 7 = T
(may have additional parameters)
e |nitial value: init :: 7
(function “empty”)
Needed for complexity analysis:
e Time/cost: t_f:: 7 = num
(num = some numeric type
nat may be inconvenient)

e Potential ® :: 7 = num (creative spark!)
Need to prove: ® s > 0 and @ init = 0

237
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Amortized and real cost
Sequence of operations: fi, ..., f,

Amortized and real cost
Sequence of operations: fi, ..., f,
Sequence of states:
Sy 1= nit,

Amortized and real cost

Sequence of operations: fi, ..., f,
Sequence of states:
Sy - — ZTLZt, S = f1 S0y ---, Sp = fn Sn—1

Amortized cost := real cost + potential difference

Qi1 = tfiy1 8 + P sy — P o5

238

Amortized and real cost

Sequence of operations: fi, ..., f,
Sequence of states:
So = wnit, 81 = fi S0, ..., Sn = fu Sn-1

Amortized cost := real cost + potential difference
Giy1 = tfii1 8 + @ s — P s

—
Sum of amortized costs > sum of real costs

238
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Amortized and real cost
Sequence of operations: fi, ..., f,
Sequence of states:

So ‘= ant, S1 = f1 S0y -+, Sp = f;z Sn—1

Amortized cost := real cost + potential difference
aiy1 = tfir1 8 + @ spp — P s

—
Sum of amortized costs > sum of real costs

Z?Zl a; = Z:Lzl (t—fi Sie1+ P s — @ SH)

Amortized and real cost
Sequence of operations: fi, ..., f,
Sequence of states:

Sy = ’LTL’Lt, S1 = f1 S0y + -y Sp = fn Sn—1

Amortized cost := real cost + potential difference
aip1 = tfiy1 8 + P s — P g

—
Sum of amortized costs > sum of real costs

Z:I:l @ 22;1 (t—fi Si1+Ps — @ 8,',1)
(>, tfi sic) + © s, — @ init
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Amortized and real cost
Sequence of operations: fi, ..., f,
Sequence of states:

Sy - — ZTLZt, S = f1 S0y ---, Sp = fn Sn—1

Amortized cost := real cost + potential difference
Qi1 = tfiy1 8 + P sy — P o5

—

Sum of amortized costs > sum of real costs
S @o= Yo (tfisia+ P s — O siq)
(27:1 tfi sic1) + ® s, — @ init
221:1 tfi sia

AV

Amortized and real cost
Sequence of operations: fi, ..., f,
Sequence of states:

So = wnit, 81 = fi S0, ..., Sn = fu Sn-1

Amortized cost := real cost + potential difference
Giy1 = tfii1 8 + @ s — P s

—
Sum of amortized costs > sum of real costs

Yoiga o= > (tfisia+ s — P osig)

238

238



Back to example:

incer :: bool list = bool list

counter

240

Back to example:

iner :: bool list = bool list

incr [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs
init = ||

O bs = length (filter id bs)

counter

240

Back to example: counter

incr :: bool list = bool list

incr [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs

240

Back to example: counter

iner :: bool list = bool list

incr [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs
init = ||

O bs = length (filter id bs)

Lemma
t_incr bs + ® (incr bs) — ® bs = 2

240



Back to example: counter

incr :: bool list = bool list

incr [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs

init = ||
CIES
Proof obligation summary
e ds>0
® O gnit =10

e For every operation f:: 7 = ... = T:
tfsT+ O(fsT) —Ps<afsT

If the data structure has an invariant invar;
assume precondition invar s
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Proof obligation summary

e $s>0
o O nit=0

e For every operation f:: 7 = ... = T:
tfsT+ O(fsT) —Ps<afsT

241

Proof obligation summary

e ds>0

e ¢ init =0

e For every operation f:: 7 = ... = T:
tfsT+ O(fsT) —Ps<afsT

If the data structure has an invariant invar:
assume precondition invar s

If ftakes 2 arguments of type 7:
tfs1 9T+ P(fs197) —Pss —DPswu<afs 9T
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Warning: real time

Amortized analysis unsuitable for real time applications:

Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.

Single threaded = no value is used more than once

Otherwise:

let counter = 0;
bad = increment counter 2" — 1 times;

243

Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.

243

Warning: single threaded

Amortized analysis is only correct for single threaded
uses of the data structure.

Single threaded = no value is used more than once

Otherwise:

let counter = 0;
bad = increment counter 2" — 1 times;
_ = incr bad;

= incr bad;

= incr bad;
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Warning: observer functions

Observer function: does not modify data structure
=— Potential difference = 0
— amortized cost = real cost

Warning: observer functions
Observer function: does not modify data structure
— Potential difference = 0

— amortized cost = real cost
=—> Must analyze WCC of observer functions
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