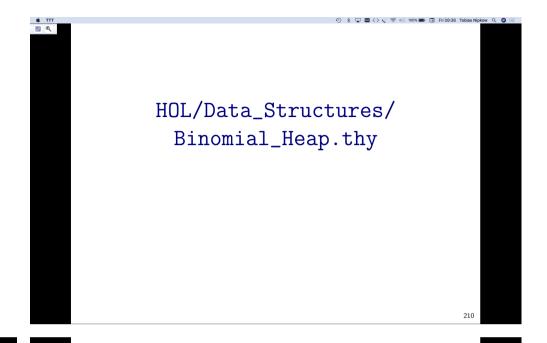
Script generated by TTT

Title: FDS (12.07.2019)

Date: Fri Jul 12 08:36:41 CEST 2019

Duration: 83:38 min

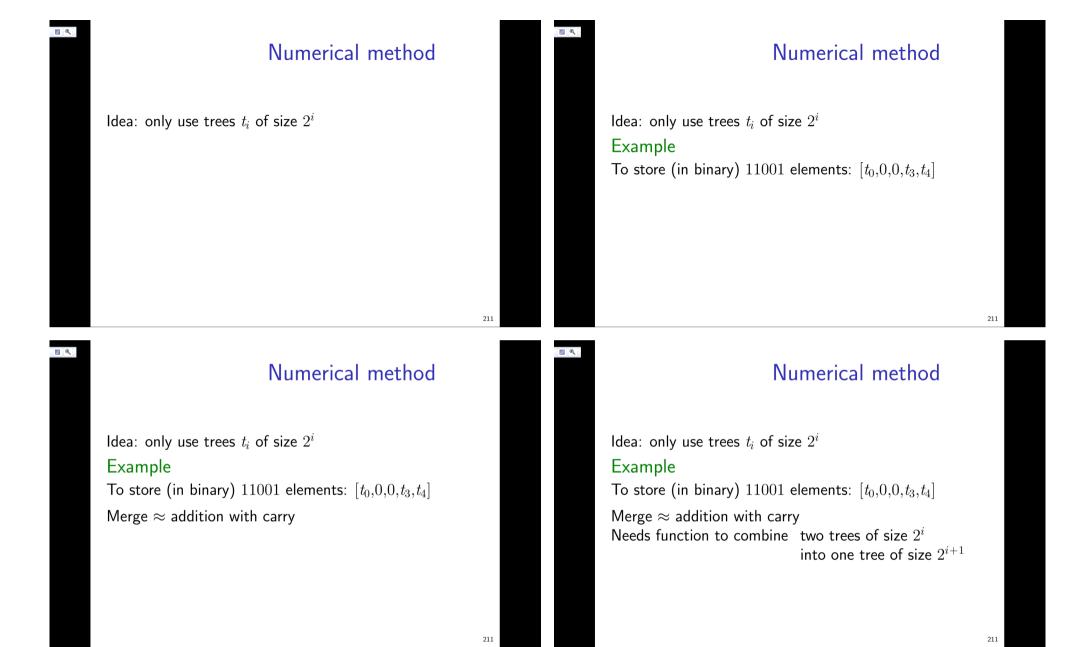
Pages: 97



HOL/Data_Structures/
Binomial_Heap.thy

Numerical method

Idea: only use trees t_i of size 2^i



Binomial tree

datatype 'a tree =
 Node (rank: nat) (root: 'a) ('a tree list)

Binomial tree

datatype 'a tree =
Node (rank: nat) (root: 'a) ('a tree list)

Invariant: Node of rank r has children $[t_{r-1}, \dots t_0]$ of ranks $[r-1, \dots, 0]$

212

Q

Binomial tree

```
datatype 'a tree =
Node (rank: nat) (root: 'a) ('a tree list)
```

Invariant: Node of rank r has children $[t_{r-1}, \dots t_0]$ of ranks $[r-1, \dots, 0]$

 $\begin{array}{l} invar_btree \ (Node \ r \ x \ ts) = \\ ((\forall \ t \in set \ ts. \ invar_btree \ t) \ \land \ map \ rank \ ts = \ rev \ [0..< r]) \end{array}$

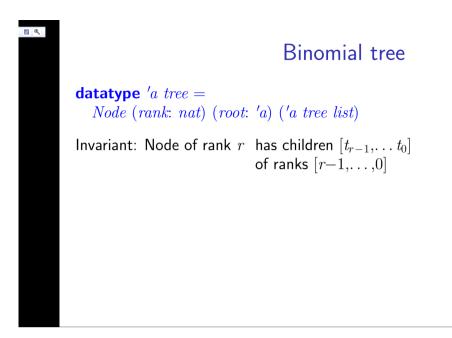
Binomial tree

datatype 'a tree =
Node (rank: nat) (root: 'a) ('a tree list)

Invariant: Node of rank r has children $[t_{r-1}, \dots t_0]$ of ranks $[r-1, \dots, 0]$

 $invar_btree \ (Node \ r \ x \ ts) = ((\forall \ t \in set \ ts. \ invar_btree \ t) \land map \ rank \ ts = rev \ [0..< r])$

Lemma $invar_btree\ t \Longrightarrow |t| = 2^{rank\ t}$



Numerical method

Idea: only use trees t_i of size 2^i

Example

To store (in binary) 11001 elements: $[t_0,0,0,t_3,t_4]$

Merge \approx addition with carry

Needs function to combine two trees of size 2^i

into one tree of size 2^{i+1}

212

Combining two trees

How to combine two trees of rank i into one tree of rank i+1

Binomial tree

datatype 'a tree =
 Node (rank: nat) (root: 'a) ('a tree list)

213

Binomial heap

Use sparse representation for binary numbers: $[t_0,0,0,t_3,t_4]$ represented as $[(0,t_0),(3,t_3),(4,t_4)]$

Binomial heap

Use sparse representation for binary numbers: $[t_0,0,0,t_3,t_4]$ represented as $[(0,t_0),(3,t_3),(4,t_4)]$

type_synonym 'a heap = 'a tree list

Remember: tree contains rank

Binomial heap

Use sparse representation for binary numbers: $[t_0,0,0,t_3,t_4]$ represented as $[(0,t_0),(3,t_3),(4,t_4)]$

type_synonym $'a \ heap = 'a \ tree \ list$

Remember: tree contains rank

Invariant:

 $invar_bheap \ ts =$ $((\forall t \in set \ ts. \ invar_btree \ t) \land$ $sorted_wrt$ (<) $(map \ rank \ ts))$

Inserting a tree

```
ins\_tree \ t \ [] = [t]
ins\_tree \ t_1 \ (t_2 \ \# \ ts) =
(if rank \ t_1 < rank \ t_2 then t_1 \ \# \ t_2 \ \# \ ts
else ins\_tree (link t_1 t_2) ts)
```

E

Inserting a tree

```
ins\_tree\ t\ [] = [t] \\ ins\_tree\ t_1\ (t_2\ \#\ ts) = \\ (if\ rank\ t_1 < rank\ t_2\ then\ t_1\ \#\ t_2\ \#\ ts \\ else\ ins\_tree\ (link\ t_1\ t_2)\ ts)
```

Intuition: Handle a carry

Precondition:

Rank of inserted tree ≤ ranks of trees in heap

merge

```
merge \ ts_1 \ [] = ts_1
merge \ [] \ ts_2 = ts_2
merge \ (t_1 \ \# \ ts_1) \ (t_2 \ \# \ ts_2) =
(if \ rank \ t_1 < rank \ t_2 \ then \ t_1 \ \# \ merge \ ts_1 \ (t_2 \ \# \ ts_2)
else \ if \ rank \ t_2 < rank \ t_1 \ then \ t_2 \ \# \ merge \ (t_1 \ \# \ ts_1) \ ts_2
else \ ins\_tree \ (link \ t_1 \ t_2) \ (merge \ ts_1 \ ts_2))
```

. . .

merge

```
merge ts_1 [] = ts_1

merge [] ts_2 = ts_2

merge (t_1 \# ts_1) (t_2 \# ts_2) =

(if rank \ t_1 < rank \ t_2 then t_1 \# merge \ ts_1 \ (t_2 \# ts_2)

else if rank \ t_2 < rank \ t_1 then t_2 \# merge \ (t_1 \# ts_1) \ ts_2

else ins\_tree \ (link \ t_1 \ t_2) \ (merge \ ts_1 \ ts_2)
```

Intuition: Addition of binary numbers

Note: Handling of carry after recursive call

Get/delete minimum element

All trees are min-heaps.

21

.

merge

```
 \begin{array}{l} \textit{merge } ts_1 \; [] = ts_1 \\ \textit{merge } [] \; ts_2 = ts_2 \\ \textit{merge } (t_1 \; \# \; ts_1) \; (t_2 \; \# \; ts_2) = \\ (\textit{if } \textit{rank } t_1 < \textit{rank } t_2 \; \textit{then } t_1 \; \# \; \textit{merge } ts_1 \; (t_2 \; \# \; ts_2) \\ \textit{else } \textit{if } \textit{rank } t_2 < \textit{rank } t_1 \; \textit{then } t_2 \; \# \; \textit{merge } (t_1 \; \# \; ts_1) \; ts_2 \\ \textit{else } \textit{ins\_tree} \; (\textit{link } t_1 \; t_2) \; (\textit{merge } ts_1 \; ts_2)) \\ \end{array}
```

Intuition: Addition of binary numbers

Note: Handling of carry after recursive call

Get/delete minimum element

All trees are min-heaps.

Smallest element may be any root node:

$$ts \neq [] \implies get_min \ ts = Min \ (set \ (map \ root \ ts))$$

217

9

Get/delete minimum element

All trees are min-heaps.

Smallest element may be any root node:

```
ts \neq [] \implies get\_min \ ts = Min \ (set \ (map \ root \ ts))
```

Similar:

 $get_min_rest :: 'a \ tree \ list \Rightarrow 'a \ tree \times 'a \ tree \ list$ Returns tree with minimal root, and remaining trees

Q

Get/delete minimum element

All trees are min-heaps.

Smallest element may be any root node:

```
ts \neq [] \Longrightarrow get\_min \ ts = Min \ (set \ (map \ root \ ts))
```

Similar:

 $get_min_rest :: 'a \ tree \ list \Rightarrow 'a \ tree \times 'a \ tree \ list$ Returns tree with minimal root, and remaining trees

```
del\_min \ ts =
(case \ get\_min\_rest \ ts \ of
(Node \ r \ x \ ts_1, \ ts_2) \Rightarrow merge \ (rev \ ts_1) \ ts_2)
```

Why rev?

Get/delete minimum element All trees are min-heaps. Smallest element may be any root node: $ts \neq [] \implies get_min \ ts = Min \ (set \ (map \ root \ ts))$ Similar: $get_min_rest :: \ 'a \ tree \ list \Rightarrow \ 'a \ tree \times \ 'a \ tree \ list$ Returns tree with minimal root, and remaining trees $del_min \ ts =$ (case $get_min_rest \ ts$ of (Node $r \ x \ ts_1, \ ts_2$) $\Rightarrow merge \ (rev \ ts_1) \ ts_2$) Why rev? Rank decreasing in ts_1 but increasing in ts_2

Complexity

Recall: $|t| = 2^{rank t}$

21

Complexity

Recall: $|t| = 2^{rank \ t}$

Similarly for heap: $2^{length\ ts} \leq |ts| + 1$

Complexity

Recall: $|t| = 2^{rank t}$

Similarly for heap: $2^{length \ ts} \le |ts| + 1$

Complexity of operations: linear in length of heap

Complexity

Recall: $|t| = 2^{rank t}$

Similarly for heap: $2^{length\ ts} < |ts| + 1$

Complexity of operations: linear in length of heap

i.e., logarithmic in number of elements

Proofs:

Complexity of *merge*

 $merge (t_1 \# ts_1) (t_2 \# ts_2) =$ (if $rank \ t_1 < rank \ t_2$ then $t_1 \# merge \ ts_1 \ (t_2 \# ts_2)$ else if $rank \ t_2 < rank \ t_1$ then $t_2 \# merge \ (t_1 \# ts_1) \ ts_2$ else $ins_tree\ (link\ t_1\ t_2)\ (merge\ ts_1\ ts_2))$

Complexity of *merge*

 $merge (t_1 \# ts_1) (t_2 \# ts_2) =$ (if $rank \ t_1 < rank \ t_2$ then $t_1 \# merge \ ts_1 \ (t_2 \# ts_2)$ else if $rank t_2 < rank t_1$ then $t_2 \# merge (t_1 \# ts_1) ts_2$ else $ins_tree\ (link\ t_1\ t_2)\ (merge\ ts_1\ ts_2))$

Complexity

Recall: $|t| = 2^{rank t}$

Similarly for heap: $2^{length \ ts} \le |ts| + 1$

Complexity of operations: linear in length of heap

i.e., logarithmic in number of elements

Proofs: straightforward?

E

Inserting a tree

```
ins\_tree \ t \ [] = [t]
ins\_tree \ t_1 \ (t_2 \# ts) =
(if rank \ t_1 < rank \ t_2 then t_1 \# t_2 \# ts
else ins\_tree \ (link \ t_1 \ t_2) \ ts)
```

Intuition: Handle a carry

Complexity of *merge*

```
merge\ (t_1\ \#\ ts_1)\ (t_2\ \#\ ts_2) = \ (if\ rank\ t_1 < rank\ t_2\ then\ t_1\ \#\ merge\ ts_1\ (t_2\ \#\ ts_2) \ else\ if\ rank\ t_2 < rank\ t_1\ then\ t_2\ \#\ merge\ (t_1\ \#\ ts_1)\ ts_2 \ else\ ins\_tree\ (link\ t_1\ t_2)\ (merge\ ts_1\ ts_2))
```

Complexity of ins_tree : t_ins_tree t $ts \le length$ ts + 1A call merge t_1 t_2 (where length $t_1 = length$ $t_2 = n$) can lead to calls of ins_tree on lists of length $1, \ldots, n$. $\sum \in O(n^2)$

210

•

Complexity of *merge*

```
merge\ (t_1\ \#\ ts_1)\ (t_2\ \#\ ts_2) = \ (if\ rank\ t_1 < rank\ t_2\ then\ t_1\ \#\ merge\ ts_1\ (t_2\ \#\ ts_2) \ else\ if\ rank\ t_2 < rank\ t_1\ then\ t_2\ \#\ merge\ (t_1\ \#\ ts_1)\ ts_2 \ else\ ins\_tree\ (link\ t_1\ t_2)\ (merge\ ts_1\ ts_2))
```

Relate time and length of input/output:

```
t\_ins\_tree\ t\ ts + length\ (ins\_tree\ t\ ts) = 2 + length\ ts

length\ (merge\ ts_1\ ts_2) + t\_merge\ ts_1\ ts_2

\leq 2*(length\ ts_1 + length\ ts_2) + 1
```

(

Complexity of *merge*

```
merge\ (t_1\ \#\ ts_1)\ (t_2\ \#\ ts_2) =
(if\ rank\ t_1 < rank\ t_2\ then\ t_1\ \#\ merge\ ts_1\ (t_2\ \#\ ts_2)
else\ if\ rank\ t_2 < rank\ t_1\ then\ t_2\ \#\ merge\ (t_1\ \#\ ts_1)\ ts_2
else\ ins\_tree\ (link\ t_1\ t_2)\ (merge\ ts_1\ ts_2))
```

Relate time and length of input/output:

```
t\_ins\_tree\ t\ ts + length\ (ins\_tree\ t\ ts) = 2 + length\ ts

length\ (merge\ ts_1\ ts_2) + t\_merge\ ts_1\ ts_2

\leq 2*(length\ ts_1 + length\ ts_2) + 1
```

E

Complexity of *merge*

```
\begin{array}{l} \textit{merge} \; (t_1 \; \# \; ts_1) \; (t_2 \; \# \; ts_2) = \\ (\textit{if} \; \textit{rank} \; t_1 < \textit{rank} \; t_2 \; \textit{then} \; t_1 \; \# \; \textit{merge} \; ts_1 \; (t_2 \; \# \; ts_2) \\ \textit{else} \; \textit{if} \; \textit{rank} \; t_2 < \textit{rank} \; t_1 \; \textit{then} \; t_2 \; \# \; \textit{merge} \; (t_1 \; \# \; ts_1) \; ts_2 \\ \textit{else} \; \textit{ins\_tree} \; (\textit{link} \; t_1 \; t_2) \; (\textit{merge} \; ts_1 \; ts_2)) \end{array}
```

Relate time and length of input/output:

```
t\_ins\_tree\ t\ ts + length\ (ins\_tree\ t\ ts) = 2 + length\ ts
 length\ (merge\ ts_1\ ts_2) + t\_merge\ ts_1\ ts_2
 \leq 2*(length\ ts_1 + length\ ts_2) + 1
```

Yields desired linear bound!

Sources

The inventor of the binomial heap:

Jean Vuillemin.

A Data Structure for Manipulating Priority Queues. *CACM*, 1978.

The functional version:

Chris Okasaki. *Purely Functional Data Structures*. Cambridge University Press, 1998.

221

•

- Priority Queues
- 16 Leftist Heap
- Priority Queue via Braun Tree
- 18 Binomial Heap
- Skew Binomial Heap

E Q

Priority queues so far

insert, del_min (and merge) have logarithmic complexity

Skew Binomial Heap

Similar to binomial heap, but involving also *skew binary numbers*:

Skew Binomial Heap

Similar to binomial heap, but involving also *skew binary numbers*:

$$d_1 \dots d_n$$
 represents $\sum_{i=1}^n d_i * (2^{i+1}-1)$ where $d_i \in \{0,1,2\}$

22

Q

Complexity

Skew binomial heap:

insert in time O(1) del_min and merge still $O(\log n)$

E

Complexity

Skew binomial heap:

insert in time O(1) del_min and merge still $O(\log n)$

Fibonacci heap (imperative!):

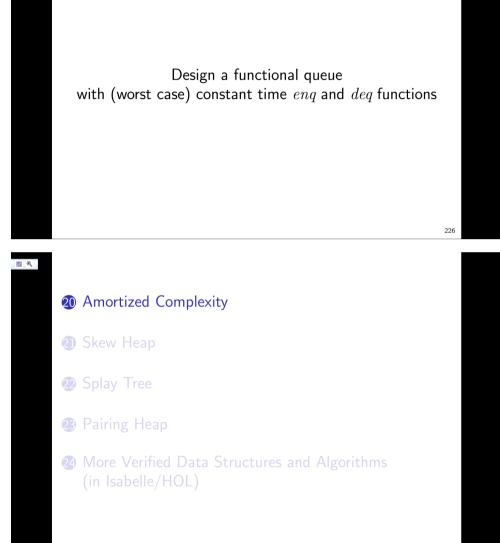
insert and merge in time O(1) $del_min \text{ still } O(\log n)$



23 Pairing Heap

(in Isabelle/HOL)

24 More Verified Data Structures and Algorithms



Puzzle

Example

n increments of a binary counter starting with 0

- WCC of one increment? $O(\log_2 n)$
- WCC of *n* increments? $O(n * \log_2 n)$
- $O(n * \log_2 n)$ is too pessimistic!
- Every second increment is cheap and compensates for the more expensive increments

WCC = worst case complexity

Example

n increments of a binary counter starting with 0

- WCC of one increment? $O(\log_2 n)$
- WCC of *n* increments? $O(n * \log_2 n)$
- $O(n * \log_2 n)$ is too pessimistic!
- Every second increment is cheap and compensates for the more expensive increments
- Fact: WCC of n increments is O(n)

WCC = worst case complexity

The problem

WCC of individual operations may lead to overestimation of WCC of sequences of operations

Amortized analysis

Idea:

Try to determine the average cost of each operation (in the worst case!)

Use cheap operations to pay for expensive ones

Amortized analysis

Idea:

Try to determine the average cost of each operation (in the worst case!)

Use cheap operations to pay for expensive ones

Method:

• Cheap operations pay extra (into a "bank account"), making them more expensive

Amortized analysis

Idea:

Try to determine the average cost of each operation (in the worst case!)

Use cheap operations to pay for expensive ones

Method:

- Cheap operations pay extra (into a "bank account"), making them more expensive
- Expensive operations withdraw money from the account, making them cheaper

233

Bank account = Potential

Bank account = Potential

- The potential ("credit") is implicitly "stored" in the data structure.
- Potential $\Phi :: data\text{-}structure \Rightarrow non\text{-}neg. number$ tells us how much credit is stored in a data structure

2.

E Q

Bank account = Potential

- The potential ("credit") is implicitly "stored" in the data structure.
- Potential Φ :: data-structure \Rightarrow non-neg. number tells us how much credit is stored in a data structure
- Increase in potential = deposit to pay for *later* expensive operation

m e.

Bank account = Potential

- The potential ("credit") is implicitly "stored" in the data structure.
- Potential Φ :: data-structure \Rightarrow non-neg. number tells us how much credit is stored in a data structure
- Increase in potential = deposit to pay for *later* expensive operation
- Decrease in potential =
 withdrawal to pay for expensive operation

234

.

Bank account = Potential

- The potential ("credit") is implicitly "stored" in the data structure.
- Potential $\Phi :: data\text{-}structure \Rightarrow non\text{-}neg. number$ tells us how much credit is stored in a data structure
- Increase in potential = deposit to pay for *later* expensive operation
- Decrease in potential =
 withdrawal to pay for expensive operation

E

Back to example: counter

Increment:

Actual cost: 1 for each bit flip

Back to example: counter

Increment:

- Actual cost: 1 for each bit flip
- Bank transaction:
 - pay in 1 for final $0 \rightarrow 1$ flip

Back to example: counter

Increment:

- Actual cost: 1 for each bit flip
- Bank transaction:
 - pay in 1 for final $0 \rightarrow 1$ flip
 - take out 1 for each $1 \rightarrow 0$ flip

23

.

Back to example: counter

Increment:

- Actual cost: 1 for each bit flip
- Bank transaction:
 - pay in 1 for final $0 \rightarrow 1$ flip
 - take out 1 for each $1 \rightarrow 0$ flip
 - \implies increment has amortized cost 2 = 1+1

Q

Back to example: counter

Increment:

- Actual cost: 1 for each bit flip
- Bank transaction:
 - pay in 1 for final $0 \rightarrow 1$ flip
 - take out 1 for each $1 \rightarrow 0$ flip
 - \implies increment has amortized cost 2 = 1+1

(4)

Data structure

Given an implementation:

- Type au
- Operation(s) $f :: \tau \Rightarrow \tau$

Data structure

Given an implementation:

- Type au
- Operation(s) $f :: \tau \Rightarrow \tau$ (may have additional parameters)
- Initial value: $init :: \tau$ (function "empty")

Needed for complexity analysis:

• Time/cost: $t_-f :: \tau \Rightarrow num$

23

0

Data structure

Given an implementation:

- Type au
- Operation(s) $f :: \tau \Rightarrow \tau$ (may have additional parameters)
- Initial value: $init :: \tau$ (function "empty")

Needed for complexity analysis:

- Time/cost: $t_-f :: \tau \Rightarrow num$ (num = some numeric type nat may be inconvenient)
- Potential $\Phi :: \tau \Rightarrow num$

(

Data structure

Given an implementation:

- Type τ
- Operation(s) $f :: \tau \Rightarrow \tau$ (may have additional parameters)
- Initial value: $init :: \tau$ (function "empty")

Needed for complexity analysis:

- Time/cost: $t_-f :: \tau \Rightarrow num$ (num =some numeric type nat may be inconvenient)
- Potential $\Phi :: \tau \Rightarrow num$ (creative spark!)

Need to prove: Φ $s \geq 0$ and Φ init = 0

•

Amortized and real cost

Sequence of operations: f_1, \ldots, f_n

Amortized and real cost

Sequence of operations: f_1, \ldots, f_n Sequence of states:

 $s_0 := init$

220

9 0

Amortized and real cost

Sequence of operations: f_1, \ldots, f_n Sequence of states:

$$s_0 := init, s_1 := f_1 s_0, \ldots, s_n := f_n s_{n-1}$$

Amortized cost := real cost + potential difference

$$a_{i+1} := t_{-}f_{i+1} \ s_i + \Phi \ s_{i+1} - \Phi \ s_i$$

(

Amortized and real cost

Sequence of operations: f_1, \ldots, f_n Sequence of states:

$$s_0 := init, s_1 := f_1 s_0, \ldots, s_n := f_n s_{n-1}$$

 ${\sf Amortized\ cost} := {\sf real\ cost} + {\sf potential\ difference}$

$$a_{i+1} := t_{-}f_{i+1} \ s_i + \Phi \ s_{i+1} - \Phi \ s_i$$

 \Longrightarrow

Sum of amortized costs > sum of real costs

23

1 0

Amortized and real cost

Sequence of operations: f_1, \ldots, f_n Sequence of states:

$$s_0 := init, s_1 := f_1 s_0, \ldots, s_n := f_n s_{n-1}$$

Amortized cost := real cost + potential difference

$$a_{i+1} := t_i - f_{i+1} \ s_i + \Phi \ s_{i+1} - \Phi \ s_i$$

 \Longrightarrow

Sum of amortized costs > sum of real costs

$$\sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} (t_{i} + f_{i} + f_{i} + f_{i})$$

Amortized and real cost

Sequence of operations: f_1, \ldots, f_n Sequence of states:

$$s_0 := init, s_1 := f_1 s_0, \ldots, s_n := f_n s_{n-1}$$

Amortized cost := real cost + potential difference

$$a_{i+1} := t_{-}f_{i+1} \ s_i + \Phi \ s_{i+1} - \Phi \ s_i$$

 \Longrightarrow

Sum of amortized costs > sum of real costs

$$\sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} (t_{-}f_{i} \ s_{i-1} + \Phi \ s_{i} - \Phi \ s_{i-1})$$
$$= (\sum_{i=1}^{n} t_{-}f_{i} \ s_{i-1}) + \Phi \ s_{n} - \Phi \ init$$

238

9

Amortized and real cost

Sequence of operations: f_1 , ..., f_n Sequence of states:

$$s_0 := init, s_1 := f_1 s_0, \ldots, s_n := f_n s_{n-1}$$

Amortized cost := real cost + potential difference

$$a_{i+1} := t_{-}f_{i+1} \ s_i + \Phi \ s_{i+1} - \Phi \ s_i$$

 \Longrightarrow

Sum of amortized costs > sum of real costs

$$\sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} (t - f_{i} s_{i-1} + \Phi s_{i} - \Phi s_{i-1})$$

$$= (\sum_{i=1}^{n} t - f_{i} s_{i-1}) + \Phi s_{n} - \Phi init$$

$$\geq \sum_{i=1}^{n} t - f_{i} s_{i-1}$$

8

Amortized and real cost

Sequence of operations: f_1, \ldots, f_n Sequence of states:

$$s_0 := init, s_1 := f_1 s_0, \ldots, s_n := f_n s_{n-1}$$

Amortized cost := real cost + potential difference

$$a_{i+1} := t_i - f_{i+1} \ s_i + \Phi \ s_{i+1} - \Phi \ s_i$$

 \Longrightarrow

Sum of amortized costs \geq sum of real costs

$$\sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} (t_{-}f_{i} s_{i-1} + \Phi s_{i} - \Phi s_{i-1})$$

Back to example: counter

 $incr :: bool \ list \Rightarrow bool \ list$

.

Back to example: counter

```
incr :: bool \ list \Rightarrow bool \ list

incr \ [] = [True]

incr \ (False \# bs) = True \# bs

incr \ (True \# bs) = False \# incr bs
```

. . . .

Back to example: counter

```
incr :: bool \ list \Rightarrow bool \ list

incr \ [] = [True]

incr \ (False \# bs) = True \# bs

incr \ (True \# bs) = False \# incr bs

init = []

\Phi \ bs = length \ (filter \ id \ bs)
```

(

Back to example: counter

```
incr :: bool \ list \Rightarrow bool \ list
incr \ [] = [True]
incr \ (False \# bs) = True \# bs
incr \ (True \# bs) = False \# incr bs
init = []
\Phi \ bs = length \ (filter \ id \ bs)
Lemma
t\_incr \ bs + \Phi \ (incr \ bs) - \Phi \ bs = 2
```

E

Back to example: counter

```
incr :: bool \ list \Rightarrow bool \ list

incr \ [] = [True]

incr \ (False \# bs) = True \# bs

incr \ (True \# bs) = False \# incr bs

init = []
```

E Q

Proof obligation summary

- $\Phi s \geq 0$
- $\bullet \Phi init = 0$
- For every operation $f :: \tau \Rightarrow ... \Rightarrow \tau$: $t_- f \circ \overline{x} + \Phi(f \circ \overline{x}) - \Phi \circ < a_- f \circ \overline{x}$

241

•

Proof obligation summary

- $\Phi s \geq 0$
- $\bullet \Phi init = 0$
- For every operation $f :: \tau \Rightarrow ... \Rightarrow \tau$: $t_{-}f s \overline{x} + \Phi(f s \overline{x}) - \Phi s \leq a_{-}f s \overline{x}$

If the data structure has an invariant invar: assume precondition $invar\ s$

8

Proof obligation summary

- $\Phi s \geq 0$
- Φ init = 0
- For every operation $f :: \tau \Rightarrow ... \Rightarrow \tau$: $t_{-}f \circ \overline{x} + \Phi(f \circ \overline{x}) - \Phi \circ \leq a_{-}f \circ \overline{x}$

If the data structure has an invariant invar: assume precondition $invar\ s$

If f takes 2 arguments of type τ : $t_{-}f\ s_1\ s_2\ \overline{x} + \Phi(f\ s_1\ s_2\ \overline{x}) - \Phi\ s_1 - \Phi\ s_2 \le a_{-}f\ s_1\ s_2\ \overline{x}$

Warning: real time

Amortized analysis unsuitable for real time applications:

Warning: single threaded

Amortized analysis is only correct for single threaded uses of the data structure.

242

0

Warning: single threaded

Amortized analysis is only correct for single threaded uses of the data structure.

Single threaded = no value is used more than once

Otherwise:

```
let counter = 0;

bad = increment counter 2^n - 1  times:
```

.

Warning: single threaded

Amortized analysis is only correct for single threaded uses of the data structure.

Single threaded = no value is used more than once

Otherwise:

Warning: observer functions

Observer function: does not modify data structure

 \implies Potential difference = 0

 \implies amortized cost = real cost

E Q

Warning: observer functions

Observer function: does not modify data structure

 \implies Potential difference = 0

 \implies amortized cost = real cost

→ Must analyze WCC of observer functions