I

Script generated by TTT

Title: FDS (17.05.2019)
Date: Fri May 17 08:30:00 CEST 2019
Duration: 83:53 min

Pages: 103

@ Proof Automation
Automating Arithmetic

110

@ Proof Automation
Automating Arithmetic

O 3 WO D LD) w00

110

Only:
variables
numbers
number * variable
+, I

Linear formulas

111

Linear formulas
Only:
variables
numbers
number * variable
_i_y J—
= <, <
— AV, —,

Examples
Linear: 3xr+Hxy<z—ar<z
Nonlinear: z < zx

Automatic proof

of arithmetic formulas
by arith

Proof method arith tries to prove arithmetic formulas.
® Succeeds or fails
® Decision procedure for extended linear formulas

D\

Extended linear formulas

Also allowed:

min, max

even, odd

t div n, t mod n where n is a number
conversion functions

nat, floor, ceiling, abs

112

Automatic proof

of arithmetic formulas
by arith

Proof method arith tries to prove arithmetic formulas.

® Succeeds or fails
® Decision procedure for extended linear formulas

® Nonlinear subterms are viewed as (new) variables.

Example: z<z*xx+ fy isviewedas z< u + v

113

Automatic proof

of arithmetic formulas
by (simp add: algebra_simps)

Automatic proof
of arithmetic formulas

by (simp add: algebra_simps)

® The lemmas list algebra_simps helps to simplify
arithmetic formulas

® |t contains associativity, commutativity and
distributivity of + and .

® This may prove the formula, may make it simpler,
or may make it unreadable.

Automatic proof
of arithmetic formulas
by (simp add: algebra_simps)
® The lemmas list algebra_simps helps to simplify
arithmetic formulas

Automatic proof
of arithmetic formulas

by (simp add: field_simps)

115

Automatic proof

of arithmetic formulas
by (simp add: field_simps)

® The lemmas list field_simps extends algebra_simps
by rules for /

e Can only cancel common terms in a quotient,
eg. rxy/ (zx*2),

Numerals

Numerals are syntactically different from Suc-terms.

116

Automatic proof

of arithmetic formulas
by (simp add: field_simps)

The lemmas list field_simps extends algebra_simps
by rules for /

Can only cancel common terms in a quotient,
eg. zxy/ (zx*2),if % 0 can be proved.

115

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example

Exponentiation x " n is defined by Suc-recursion on n.

116

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example

Exponentiation z ~ n is defined by Suc-recursion on n.
Therefore = ~ 2 is not simplified by simp and auto.

116

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.
Example

Exponentiation z ~ n is defined by Suc-recursion on n.
Therefore = ~ 2 is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule
numeral_eq_Suc

Example
simp add: numeral_eq_Suc rewrites x "2 to x x z

116

Numerals

Numerals are syntactically different from Suc-terms.
Therefore numerals do not match Suc-patterns.

Example
Exponentiation z ~ n is defined by Suc-recursion on n.
Therefore = ~ 2 is not simplified by simp and auto.

Numerals can be converted into Suc-terms with rule
numeral_eq_Suc

Auto_Proof_Demo.thy

Arithmetic

Auto_Proof_Demo. thy

@&S@;";@?i @‘X@y

117

Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.

119

@ Single Step Proofs

118

What are these 7-variables 7

120

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; ?Q] = 7P A ?Q)

What are these 7-variables ?
After you have finished a proof, Isabelle turns all free
variables V' in the theorem into 2V.
Example: theorem conjI: [?P; ?Q] = ?P A ?Q)

These ?-variables can later be instantiated:

120

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; ?Q] = ?P A ?Q

These 7-variables can later be instantiated:
e By hand:

conjIfof "a=b" "False"] ~~

120 120

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; 7Q] = ?P N 7Q)
These 7-variables can later be instantiated:

¢ By hand:
conjIfof "a=b" "False"] ~»
[a = b; False] = a = b A False

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; Q] = ?P A 7Q)
These 7-variables can later be instantiated:
e By hand:

conjIfof "a=b" "False"] ~~
[a = b; False] = a = b A\ False
e By unification:
unifying P A ?Q with a=b A Fulse

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into 2V.

Example: theorem conjI: [?P; ?Q] = ?P A ?Q)

These 7-variables can later be instantiated:
¢ By hand:
conjIfof "a=b" "False"] ~»
[a = b; False] = a = b A False
e By unification:
unifying 2P A ?2Q) with a=b A False
sets 7P to a=b and “() to Fulse.

120

Rule application

120

121

Rule application

rule: [?P; ?Q] = 7P A ?Q

Rule application

rule: [?P; ?Q] = 7P A ?2Q)

subgoal: 1.

.= A
. =— B

.— AANB

Rule application
Example: rule: [?P; ?Q] = 7P A 2Q
subgoal: 1. ... = AN DB

121

Rule application

Example: rule: [?7P; Q] = ?P A ?2Q)
subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =B
The general case: applying rule [Ay; ... ; A,] = A

to subgoal ... = (.

121

Rule application
Example: rule: [?P; Q] = P A 2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =D
The general case: applying rule [Ay; ... ; A,] = A4

to subgoal ... = C:
e Unify A and C
® Replace C' with n new subgoals A, ... A,

apply(rule zyz)

121

Typical backwards rules

P20 .
m conjI
‘P—= ?0)

P 7 P!

122

Typical backwards rules

P 2Q

7P A 7q oMt

122

l\
m\

Typical backwards rules

2P 2Q

7P A 7q SOt

. P x
/\ " allTl

‘P—= ?0) . Az 7P a
V. ?P

55 1mpl

P — 2Q)

122

Typical backwards rules

oPPQ .
7p A 7q Ot

P — 7Q WPy op g 2l

P — 20 2Q — 7P
7P — 70 iffI

122

Forward proof: OF

If ris a theorem A —= B

123

Typical backwards rules

P2Q .
2P A 70 20 conjl

= 7Q. . Az P
P — 20" g op g 2t

P — 20 2Q — 7P
7P — 20 iffI

They are known as introduction rules

because they introduce a particular connective.

122

l\
m\

Forward proof: OF

If ris a theorem A = B
and s is a theorem that unifies with A

123

Forward proof: OF

If ris a theorem A = B
and s is a theorem that unifies with A then

r OF

is the theorem obtained by proving A with s.

Forward proof: OF

Forward proof: OF

If ris a theorem A = B
and s is a theorem that unifies with A then

rlOF s
is the theorem obtained by proving A with s.
—xample: theorem refl: 7t = %t

conjI[0F refllof "a"]]

Ay

Q= a=aAN ?7Q

Forward proof: OF

If ris a theorem A = B
and s is a theorem that unifies with A then

T OF 4
is the theorem obtained by proving A with s.

Example: theorem refl: %t = %t

conjI[0F refllof "a"]]

s

Q0= a=aAN ?Q

If ris a theorem A — B
and s is a theorem that unifies with A then
r OF |
is the theorem obtained by proving A with s.
Example: theorem refl: 7t = ¢t
conjI[OF refllof "a"]]

123 123

Forward proof: OF

If ris a theorem A = B
and s is a theorem that unifies with A then

r OF

is the theorem obtained by proving A with s.

Example: theorem refl: %t = 7t

conjI[OF refl[of "a"]]

~

Q= a=aA ?7Q

The general case:

If ris a theorem [Ay;...; A,] = A
and 71, ..., 1, (m<n) are theorems then
rTOF 1y ... 1)

is the theorem obtained
by proving Ay ... A, with | ... 7.

Example: theorem refl: 9t = ¢t

conjI[OF refl[of "a"] refl[of "b"]]

The general case:

If ris a theorem [Ay; ...; A,] = A
and 71, ..., 7, (m<n) are theorems then
rOF 1 ... 1)

is the theorem obtained
by proving Ay ... A, with r ... 7.

124

The general case:

If ris a theorem [Ay; ...; A] = A
and 11, ..., 7, (m<n) are theorems then
rTOF ... 1)

is the theorem obtained
by proving Ay ... A, with | ... 75,.

Example: theorem refl: %t = 2t

conjI[OF refllof "a"] refl[of "b"]]

o d

a=aANb=1»d

124

Single_Step_Demo.thy

From now on: ¢ mostly suppressed on slides

125 126

D P@MOLDCF 83% M) [3 Fri09:06 Tobias Nipkow Q @ @ Isabelle File Edit Seach Markers Folding View Utiities Macros Plugins Help D3 WORD LT 83% @) [@ Fri09:07 TobiasNipkow Q @

= a 5 Isabelle2018/HOL - Single_Step_Demo.thy

Single_Step_Demo.thy

u . sepvep * e X Servey

126

—> versus —

— is part of the Isabelle framework. It structures
theorems and proof states: [Ay;...; A,] = A

— is part of HOL and can occur inside the logical
formulas A; and A.

—> versus —

—> is part of the Isabelle framework. It structures
theorems and proof states: [Ay;...; A,] = A

— is part of HOL and can occur inside the logical
formulas A; and A.

Phrase theorems like this [Ay; ...; A,] = 4
not like this A; A ... N A, — A

127 127

Chapter 5

Isar: A Language for
Structured Proofs

Apply scripts
® unreadable

Apply scripts

® unreadable
® hard to maintain

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

But: apply still useful for proof exploration

A typical Isar proof

proof
assume formula,
have formula, by simp

have formula, by blast
show formula,_, by ...
ged

A typical Isar proof

proof
assume formula,
have formula, by simp

have formula, by blast
show formula,_, by ...
qed

proves formulay, => formula,,

132

Isar core syntax

proof = proof [method] step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...) | ...

133

133

Isar core syntax

proof = proof [method] step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...

= fix variables
| assume prop (=)
| [from fact™] (have | show) prop proof

step

Isar core syntax
proof = proof [method] step* qed
| by method

133

|sar core syntax Isar core syntax

proof = proof [method] step* qed proof = proof [method] step* qed

| by method | by method
method = (simp ...) | (blast ...) | (induction ...) | ... method = (simp ...) | (blast ...) | (induction ...) | ...
step = fix variables (A) step = fix variables

| assume prop (=) | assume prop (=)

| [from fact™] (have | show) prop proof | [from fact™] (have | show) prop proof
prop = [name:] "formula” prop = [name:] "formula”

fact = name| ...

Example: Cantor’s theorem

@ Isar by example
lemma — surj(f:: 'a = 'a set)

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
proof

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
proof lefault prooif: assume sur), Show False
assume a: surj f

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
pI’OOf 1‘« i‘(i)I'OO0L: assume sury, how Fal

135

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)

proof defa roof: assume surj, show Fals
assume a: surj f
fromahave b: V A.d a. A= fa

135

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
proof default proof: assume surj, show False
assume a: surj f
fromahave b: V A. J a. A= fa
by(simp add: surj_def)

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
proof default proof: assume surj, show False
assume a: surj f
fromahave b: V A. J a. A= fa
by(simp add: surj_def)
from bhave ¢: 3 a. {z. 2 ¢ fz} = fa
by blast

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
proof default proof: assume surj, show
assume a: surj f
fromahave b: V A. J a. A= fa
by(simp add: surj_def)
from bhave ¢: 3 a. {z. 2 ¢ fz} = fa

135

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
pl’OOf defa roof: assume
assume a: surj f
fromahave b: V A.d a. A= fa
by(simp add: surj_def)
frombhave ¢: 3 a. {z. 2 ¢ faz} =fa
by blast
from c show Fulse
by blast

135

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
proof lefault proof: assume surj, show False
assume a: surj f
fromahave b: V A. J a. A= fa
by(simp add: surj_def)
from bhave c: 3 a. {z. 2 ¢ fz} = fa
by blast
from ¢ show Fulse
by blast
ged

Isar_Demo.thy

B g 2LeXe

Isar_Demo.thy

Cantor and abbreviations

this
then
thus
hence

Abbreviations

the previous proposition proved or assumed
from this

then show

then have

137

Example: Cantor’s theorem

lemma — surj(f:: 'a = 'a set)
proof lefault proof: assume surj, show False
assume a: surj f
fromahave b: V A. J a. A= fa
by(simp add: surj_def)
from bhave c: 3 a. {z. 2 ¢ fz} = fa
by blast
from ¢ show Fulse
by blast
ged

(have|show) prop using facts

Structured lemma statement

lemma
fixes f:: 'a = 'a set
assumes s: surj f
shows Fulse

using and with

Structured lemma statement

lemma
fixes f:: 'a = 'a set
assumes s: surj f
shows False

proof —

139

Structured lemma statement

lemma
fixes f:: 'a = 'a set
assumes s: surj f
shows Fulse
proof — 1o automatic proof step
have 3 a. {z. 2 ¢ fz} = fa using s
by(auto simp: surj_def)

Structured lemma statement

lemma
fixes f:: 'a = 'a set
assumes s: surj f
shows Fulse
proof — 1o automatic proof step
have 3 a. {z. ¢ fz} = fa using s
by(auto simp: surj_def)
thus Fulse by blast
ged

Proves surj f = Fulse

Structured lemma statement

lemma
fixes f:: 'a = 'a set
assumes s: surj f
shows Fulse
proof — 1o automatic proof step
have 3 a. {z. z ¢ fz} = f a using s
by(auto simp: surj_def)
thus False by blast
ged

139

Structured lemma statement

lemma
fixes f:: 'a = 'a set
assumes s: surj f
shows Fulse
proof — 1o automatic proof step
have 3 a. {z. 2 ¢ fa} = f a using s
by(auto simp: surj_def)
thus False by blast
qed

Proves surj f = False
but surj f becomes local fact s in proof.

139

The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively

140

Structured lemma statements

fixesz :mandy i 7 ...
assumes a: Pand b: @ ...
shows R

¢ fixes and assumes sections optional

141

Structured lemma statements

fixesx > mandy 1 ...
assumes a: Pand b: @ ...
shows R

141

l\
m\

© Proof patterns

142

Case distinction

show R
proof cases
assume P

show R (proof)
next
assume — P

show R (proof)
ged

Contradiction

show — P
proof
assume P

show False (proof)
ged

show R
proof cases
assume P

show R (proof)
next
assume — P

show R (proof)
ged

Case distinction

have P Vv @ (proof)
then show R
proof

assume P

show R (proof)
next
assume ()

show R (proof)
ged

143

show — P
proof
assume P

show False (proof)

ged

Contradiction

144

Contradiction

show — P show P
proof proof (rule ccontr)
assume P assume —P
show Fulse (proof) show Fulse (proof)
ged ged

show P «— @
proof
assume P

show @ (proof)
next

assume ()

show P (proof)
ged

Y and 3 introduction

show V z. P(z)
proof
fix £ local fixed varia
show P(2) (proof)
ged

VY and 3 introduction

show V z. P(z)

proof
fix £ local fixed variable
show P(1) (nroof)

- 0~ .
B HBg=ZL@eXg

146 146

