& TIT © $ W< @\ A <) to%mm [@ Fri0s30 Tobias Nipkow

Script generated by TTT
@ Overview of Isabelle/HOL

Title: FDS (03.05.2019)

Summary
Date: Fri May 03 08:30:34 CEST 2019
Duration: 89:08 min

Pages: 101

39

FIES g 4

Proof methods

* datatype defines (possibly) recursive data types. ® induction performs structural induction on some

. . : . iable (if th f th iable i .
e fun defines (possibly) recursive functions by variable (if the type of the variable is a datatype)

pattern-matching over datatype constructors.

40

41

Proof methods

® induction performs structural induction on some
variable (if the type of the variable is a datatype).

® quto solves as many subgoals as it can, mainly by
simplification (symbolic evaluation):

" ”

=" is used only from left to right!

41

Proofs

General schema:

n

lemma name: "...

apply (...)
apply (...)
done

If the lemma is suitable as a simplification rule:

lemma namel[simp]: "..."

42

General schema:

lemma name: "...

apply (...)
apply (...)
done

Proofs

42

[FRCS
Command
“completes” any proof.

Top down proofs

sorry

43

The proof state The proof state
LAz ... 00 A= B LAz ... 2. A= B
7 ... x, fixed local variables
The proof state Multiple assumptions
1/\£11’[,A:>B [Al;---;An]]:>B
7 ... x, fixed local variables abbreviates
A local assumption(s) Al — ... —= A, — B

B actual (sub)goal

@ Overview of Isabelle/HOL

Numeric Types

I

Numeric types: nat, int, real

Need conversion functions (inclusions):

mt o nat = int
real 1 nat = real
real_of-int :: int = real

Numeric types: nat, int, real

Numeric types: nat, int, real

Need conversion functions (inclusions):

it o nat = int
real 1 nat = real
real_of-int = int = real

If you need type real,

import theory Complex_Main instead of Main

47

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(With theory Complex_Mam)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(with theory Complex_Main)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Examples
(i:int) + (n:nat)

48

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(with theory Complex_Main)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Examples

(@:int) + (niinat) ~» i+ int n

48

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(With theory Complex_Main)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Examples
(i::int) + (n:nat) ~ i+ intn
((n:inat) + n) :: real

Numeric types: nat, int, real

Isabelle inserts conversion functions automatically
(With theory Complex_Mam)
If there are multiple correct completions,
Isabelle chooses an arbitrary one

Examples
(i::int) + (n:inat) ~ i+ intn
((n::nat) + n) :: real ~> real(n+n), real n + real n

&
3

48

Numeric types: nat, int, real

Coercion in the other direction:

nat :: int = nat

Numeric types: nat, int, real

Coercion in the other direction:

nat 1 int = nat

Overloaded arithmetic operations

e Basic arithmetic functions are overloaded:
+ —*x2a=Ta="a

Overloaded arithmetic operations

e Basic arithmetic functions are overloaded:
4+, = *xua="a="a
—2'a="a

o
=]

Overloaded arithmetic operations

e Basic arithmetic functions are overloaded:
+, — *x2a=Ta="a
—2'a="a

® Division on nat and int:
div, mod :: 'a = 'a = 'a

50

Overloaded arithmetic operations

Basic arithmetic functions are overloaded:
4+, = *xu'a="a="a
—t'a="a
® Division on nat and int:
div, mod :: 'a = 'a = a
e Division on real: / ::'a = 'a="a

Exponentiation with nat: " :: 'a = nat = 'a

50

Overloaded arithmetic operations

Basic arithmetic functions are overloaded:

+ —*x2a=Ta="a

—'a="Ta

Division on nat and int:

div, mod :: 'a = 'a = 'a

Division on real: / :: 'a = 'a = 'a

“ula= nat = a
Exponentiation with real: powr :: 'a = 'a = 'a

Exponentiation with nat:

o
=]

@® Type and function definitions

Overloaded arithmetic operations

Basic arithmetic functions are overloaded:

4+, = *xua="a="a

—a="a

Division on nat and int:

div, mod :: 'a = 'a = 'a

Division on real: / :: 'a = 'a = 'a

“ula= nat = a
Exponentiation with real: powr :: 'a = 'a = 'a

Exponentiation with nat:

Absolute value: abs :: 'a = 'a

Above all binary operators are infix

datatype («q,...,)t

datatype — the general case
= Cl Tl,l e T1JL1
?

Ck Tk - - Tk

datatype — the general case

datatype (Oél, ey O[,L)t Cl 1,1 Tlny

L
| Ck Tt Thn,

o Types: Ci:iTig = -+ = Tip, = (Q1,...,00)t

datatype — the general case

datatype (Oél, ceey O./,L)t Cl 11Ty

|
|
L Types: 07 DTl = = Tip, = (Oél, Ce ,Oén)t
® Distinctness: C; ... #C; ... ifi#

e Injectivity: (C;xy...x,, =Ciy1...Yp,) =
(«rl =y N--- /\xn,; = yn,-)

datatype — the general case
datatype (041, ceey (l/n)t = Cl 1,1 Tim
| Ck, Tk - - - Tk
o Types: Ci g = -+ = Tip, = (Q1,...,00)1
® Distinctness: C; ... #C; ... (fi#]

datatype — the general case

datatype (011, <y Ozn)t Cl 711+ Ty

b Types: C, DTl = = Tig, = (Oél, cee, Oén)t

® Distinctness: C; ... # Cj ...

o Injectivity: (C;xy...xp, =Ci ... Yp,) =
(xl =y AN A Tn, = yn;,)

53

datatype — the general case

datatype (Ozl, ey O[,L)t = Cl 1,1 Tlny
| Ck Tk-,l"'Tk?,m
o Types: Ci:iTig = -+ = Tip, = (Q1,...,00)t

e Distinctness: C; ... #Cj ... ifi#]
e Injectivity: (C;xy...xp, =Ciy1...Yp,) =
(33'1 =y AN A Tp, = yn,;>

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

Case expressions

Like in functional languages:

(case t of paty =t | | pat, = t,)

o
@

Case expressions

Like in functional languages:

(case t of paty =t | | pat, = t,)

Complicated patterns mean complicated proofs!

54

Case expressions

Like in functional languages:
(case t of paty = t; | | pat, = t,)

Complicated patterns mean complicated proofs!

Need () in context

Tree_Demo.thy

The option type

datatype 'a option = None | Some 'a

If 'a has values ay, ay, ...

then 'a option has values None, Some ai, Some as, ...

56

—)

Tree_Demo.thy

Sefyer

= e

SH@ XE O=

Serve
nC

The option type

datatype 'a option = None | Some 'a

If ‘a has values a;, ay, ...
then ‘a option has values None, Some a;, Some ay, ...

Typical application:

fun lookup ::

('a x

') list = 'a = 'b option where

56

The option type

datatype 'a option = None | Some 'a

If ‘a has values ay, as, ...

then 'a option has values None, Some ai, Some as, ...

Typical application:

fun lookup :: (a x 'b) list = 'a = 'b option where
lookup || = None |
lookup ((a, b) # ps) x =

The option type

datatype 'a option = None | Some 'a

If ‘a has values q;, as, ...

then ‘a option has values None, Some a;, Some as, ...

Typical application:

fun lookup :: (a x 'b) list = 'a = 'b option where
lookup [| = None |
lookup ((a, b) # ps) z =

(if a = x then Some b else lookup ps 1)

o
=

Non-recursive definitions

Example
definition sq :: nat = nat where sq n = nxn

56

Non-recursive definitions

Example
definition sq :: nat = nat where sq n = nxn

No pattern matching, just fz; ... =, =

58

The danger of nontermination

How about fz=fz+ 1 7

a
©

The danger of nontermination

How about fz=fz+ 1 7

Subtract f z on both sides.
— 0 =1

I All functions in HOL must be total |

The danger of nontermination

How about fz=fz+ 1 7

Subtract f x on both sides.
— 0=1

59

Key features of fun

e Pattern-matching over datatype constructors

60

Key features of fun Key features of fun

e Pattern-matching over datatype constructors Pattern-matching over datatype constructors

® Order of equations matters Order of equations matters

® Termination must be provable automatically ® Termination must be provable automatically
by size measures by size measures

e Proves customized induction schema

Example: separation Example: separation

fun sep :: 'a = 'a list = 'a list where

sep a (whyzs) = o 4 a # sep a (yhzs) |

SEP a4 TS = IS

. SmMeXE 0BG

Basic induction heuristics

Theorems about recursive functions
are proved by induction

64

A tail recursive reverse

Our initial reverse:

fun rev - 'a list = 'a list where
rev] = |
rev (z#xs) = rev xs Q [1]

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev (] =0 |
rev (z#zs) = rev zs Q [1]

A tail recursive version:
fun itrev :: 'a list = 'a list = 'a list where

65

Basic induction heuristics
Theorems about recursive functions
are proved by induction
Induction on argument number ¢ of f
if f is defined by recursion on argument number 2

65

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]

A tail recursive version:
fun itrev :: 'a list = 'a list = 'a list where
itrev || ys = ys |

o
o

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev |] =0
rev (x#xs) = rev zs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev || ys = ys |
itrev (z#xs) ys = itrev xs (z#ys)

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || = |
rev (z#xs) = rev xs Q []

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev || ys = ys |
itrev (z#txs) ys =

65

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev (] =0 |
rev (z#zs) = rev zs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev |] ys = ys |
itrev (z#xs) ys = itrev xs (z#ys)

lemma itrev xs || = rev zs

65

Induction_Demo.thy

Generalisation

Generalisation

e Replace constants by variables

e Generalize free variables

® by arbitrary in induction proof
® (or by universal quantifier in formula)

o
=

So far, all proofs were by structural induction

67

So far, all proofs were by structural induction
because all functions were primitive recursive.

Computation Induction

Example

fun div2 :: nat = nat where
di2 0= 0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(div2 n)

Computation Induction

Example

fun div2 :: nat = nat where
div2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(div2 n)

~ induction rule div2.induct:

P0) P(Suc0) An. P(n) = P(Suc(Sucn))

P(m)

Computation Induction

Example

fun div2 :: nat = nat where
div2 0= 0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(din2 n)

~~ induction rule div2.induct:

P(0) P(Suc0)

P(n) = P(Suc(Suc n))

P(m)

Computation Induction

If f::7 = 7" is defined by fun, a special induction
schema is provided to prove P(z) for all x :: 7:

Computation Induction

If f::7 = 7" is defined by fun, a special induction
schema is provided to prove P(x) for all z :: 7:

for each defining equation

fley = .. fr)...flrg) ...
prove P(e) assuming P(ry), ..., P(ry).

Computation Induction

If f::7 = 7"is defined by fun, a special induction
schema is provided to prove P(x) for all x :: 7:

for each defining equation

fle) = . f(r)... fre)...

prove P(e) assuming P(ry), ..., P(rg).

Induction follows course of (terminating!) computation

Computation Induction

Example

fun div2 :: nat = nat where
div2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(div2 n)

~ induction rule div2.induct:

P0) P(Suc0) An. P(n) = P(Suc(Sucn))

P(m)

Computation Induction

If f::7 = 7" is defined by fun, a special induction
schema is provided to prove P(z) for all x :: 7:

for each defining equation

fle) = ..f(r)...f(ry)...

prove P(e) assuming P(ry), ..., P(rg).

Induction follows course of (terminating!) computation

Computation Induction How to apply f.induct
If f::7 = 7" is defined by fun, a special induction

schema is provided to prove P(x) for all z :: 7:

.. . If for . T, 7'
for each defining equation fon=-=n=

fley = .. fr)...flrg) ...
prove P(e) assuming P(ry), ..., P(ry).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct

71

CIEY EIE
How to apply f.induct How to apply f.induct
ffom=-=mn=>1" ffom=-=mn=>1"
(induction ay ... a, rule: finduct) (induction a;y ... a, rule: finduct)

Heuristic:

® there should be acall fa; ... a, in your goal

71

Induction_Demo.thy

Computation Induction

O Simplification

Simplification means . ..

Using equations [= r from left to right

As long as possible

73

Simplification means ...

Using equations [= r from left to right

As long as possible

Terminology: equation ~~ simplification rule

An example

O+n =n (1)
o (Sucm)+n = Suc(m+n) (2)
Equations: (Sucm < Sucn) = (m <n) (3)
(0<m) = True (4)
An example
O+n = n (1)
o (Sucm)+n = Suc(m+mn) (2)
Equations: (Sucm < Sucn) = (m<n) (3)
(0<m) = True (4)
0+ Suc0 < SucO0+=x S,
Suc0 < Suc0+x
Rewriting:

An example

RN
75
=HCN

75

O+n = n (1)
o (Sucm)+n = Suc (m+n) (2)
Equations: (Sucm < Suen) = (m <n) (3)
(0<m) = True (4)
0+SucO < SucO0+=x
Rewriting:
An example
0O+n =n (1)
o (Sucm)+n = Suc (m+n) (2)
Equat/ons. (SUC m S Suc TL) = (m S 7L> (3)
(0<m) = True (4)
0+ SucO < SucO+z =
SucO < SucO0+x 2
Rewriting: Suc0 < Suc (0+ z)

75

An example

O+n = n
o (Sucm)+n = Suc (m+n)
Equations. (Sucm < Sucn) = (m<n)

(0<m) = True
0+ Suc0 < SucO+=zx W
Suc0 < SucO0+=z @
Rewriting: Suc0 < Suc (0+ x) ®

0 < 0+4+=z

An example

O+n = n (1)
o (Sucm)+n = Suc(m+n) (2)
Equations: (Sucm < Suen) = (m <n) (3)
(0<m) = True (4)

0+ Suc0 < Suc0+x Q

Suc0 < SucO+zx &

Rewriting: &

Suc0 < Suc(0+z) =

0 < 0+z s

True

75 75

Conditional rewriting
Simplification rules can be conditional:

[Py;...; P] = 1Il=r

Conditional rewriting

Simplification rules can be conditional:
[Py ...; Ph] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Conditional rewriting
Simplification rules can be conditional:
[[P1;--.;Pk]]_——>l=7“

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True
p(r) = f(z) = g(z)

Conditional rewriting

Simplification rules can be conditional:
[Py;...; P] = 1Il=r

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True
p(x) = [f(x) = g(z)
We can simplify f(0) to ¢g(0) but
we cannot simplify f(1) because p(1) is not provable.

Conditional rewriting

Simplification rules can be conditional:
[Py ... Pr] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example

p(0) = True
p(z) = f(z) = g(z)
We can simplify f(0) to g(0)

76

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

7

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(z)

-~
N

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(z)
Principle:

[P;..;P] =1l=r
is suitable as a stmp-rule only

if [is “bigger” than r and each P,

n < m= (n< Sucm) = True
Sucn < m= (n<m)= True

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(x)
Principle:
[Pi;..; Pk] = 1=

is suitable as a simp-rule only
if [is “bigger” than r and each P,

7

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(x)
Principle:
[Py ... P = l=r

is suitable as a simp-rule only
if [is “bigger” than r and each P,

n<m= (n< Sucm)= True YES
Suc n < m= (n< m)= True NO

7

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(x), g(z) = f(z)
Principle:
[Py;...; P] = 1=

is suitable as a simp-rule only
if [is “bigger” than r and each P,

n<m= (n< Sucm) = True YES
Sucn < m=(n<m)= True NO

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(x)
Principle:
[Pi;..; Pk] = 1=

is suitable as a simp-rule only
if [is “bigger” than r and each P,

n<m= (n< Sucm)= True YES
Suc n < m= (n<m)= True NO

7

