Script generated by TTT

Title: Distributed_Applications (03.06.2014)
Date: Tue Jun 03 14:32:42 CEST 2014
Duration: 87:56 min

Pages: 27

'f Ordering for message delivery — T

Dslivery of messages without delay in the same sequence is not possible in a distributed system = ordering
methods for message delivery.

synchronously, i.e. there is a system-wide global time ordering.

loosely synchronous, i.e. consistent time ordering, but no system-wide global (absolute) time.
Total ordering by sequencer
Virtually synchronous ordering

sync-ordering
ks

(&8 Message delivery

lelc

< Favoriten 9 @

va-ss14ywhiteboardlva_course5.6.7.himl MESEN Ll =[] %

~ ElEenf g]vas

Message delivery is an important issue of group communication; two aspects are relevant:

a) who gets the message, and
b) when is the message delivered.

Atomicity
Sequence of message delivery

Ordering for message delivery

Total ordering by sequencer T)

A selected group member serializes all the messages sent to the group.

sender sequencer

message N sequence
\ “\/numiler of
L PPras < h |
|/ ? | -{ — {/)
N v N

receiver
1st step: the sender distributes the message N to all group members;
2nd step: sequencer (serializer, coordinator) determines a sequence number for N and distributes it to all
group members; delivery of N to the application processes takes place according to this number.
Zookeeper
a distributed open-source coordination service for distributed applications

keeps all the servers in sync.

guarantees a total order of messages.

use of majority quorum for coordinator selection .

Ordering for message delivery — @ 'f Ordering for message delivery e %

Dslivery of messages without delay in the same sequence is not possible in a distributed system = ordering

Delivery of messages without delay in the same sequence is not possible in a distributed system = ordering
methods for message delivery.

methods for message delivery.

synchronously, i.e. there is a system-wide global time ordering. synchronously, i.e. there is a system-wide global time ordering.

loosely synchronous, i.e. consistent time ordering, but no system-wide global (absolute) time.
Total ordering by sequencer

loosely synchronous, i.e. consistent time ordering, but no system-wide global (absolute) time.
Total ordering by sequencer

Virtually synchronous ordering

Virtually synchronous ordering
sync-ordering sync-ordering

Ordering for message delivery o ,@

'-f Taxonomy of multicast e T)

Dslivery of messages without delay in the same sequence is not possible in a distributed system = ordering Multicast messages for constructing distributed systems based on group communication;
methods for message delivery.

different multicast communication semantics
synchronously, i.e. there is a system-wide global time ordering.

loosely synchronous, i.e. consistent time ordering, but no system-wide global (absolute) time. ¢
Total ordering by sequencer
Virtually synchronous ordering

sync-ordering

- - unreliable multica&
reliable multicast

atomic atomic
multicast serialized
multicast
serialized
L K multicast

8
Multicast classes%
Multicasting can be realized by using IP multicast which is built on top of the Internet protocol IP.

Java API provides a datagram interface to IP multicast through the class MulticastSocket .

Multicast classes T

Depending on the message delivery guarantee, five classes of multicast services can be distinguished.

1. unreliable multicast : an attempt is made to transmit the message to all members without
acknowledgement; at-most-once semantics with respect to available members; message ordering is not
guaranteed.

2. reliable multicast : the system transmits the messages according to "best-effort”, i.e. the "at-least-once"
semantics is applied.

B-multicast primitive: guarantees that a correct process will eventually deliver the message as long as
the multicaster does not crash.

B-deliver primitive: corresponding primitive when a message is received.

3. serialized multicast : ([:%nsistent sequence for message delivery; distinction between

totally ordered

causally ordered (i.e. virtually synchronous)

4. atomic multicast : a reliable multicast which guarantees that either all operational group members receive a

message, or none of them do.

5. atomic, serialized multicast : atomic message delivery with consistent delivery sequence

Group communication

Introduction
Group communication facilitates the interaction between groups of processes.
Motivation

Important issues
Conventional approaches

Groups of components
Management of groups
Message dissemination
Message delivery

Taxonomy of multicast
Group communication in I1SIS

JGroups

Taxonomy of multicast e % —)

Multicast messages for constructing distributed systems based on group communication;

different multicast communication semantics

/

- - unreliable multica&
reliable multicast

atomic
serialized
multicast

atomic
multicast

serialized

It t
L K multicas /)

Multicast classes

Multicasting can be realized by using IP multicast which is built on top of the Internet protocol IP.
Java API provides a datagram interface to IP multicast through the class MulticastSocket .

Gener

'-f Group communication in ISIS e T)

The 1818 system developed at Cornell University is a framework for reliable distributed computing based upon
process groups. It specifically supports group communication. Successor of 1SIS was “ .

1818 is a toolkit whose basic functions include process group management and ordered multicast primitives
for communication with the members of the process group.

abcast: totally ordered multicast.

chcast: causally ordered multicast.

ahcast protocol
chcast protocol

abcast protocol

T~

atomic broadcast supports a total ordering for message delivery, i.e. all messages to the group G are delivered
to all group members of G in the same sequence.

abcast realizes a serialized multicast

abcast is based on a 2-phase commit protocol; message serialization is supported by a distributed
algorithm and logical timestamps.

Phase 1

Sender S sends the message N with logical timestamp Ts (N) to all group members of G (e.g. by multicast).
Each g € G determines a new logical timestamp Ty (N) for the received message N and returns it to S.

Phase 2

S determines a new logical timestamp for N; it is derived from all proposed timestamps Tg (N) of the group
members g.

Tz aew (N) = max (Ty (N)) + /|G| , with j being a unique identifier of sender S.
S sends acommit to all g = G with T new (N).

Each g = G delivers the message according to the logical timestamp to its associated application process.

Algorithm of the cbcast protocol

Let n be the number of group members of G. Each g € G has a unigue number of {1, ..., n} and a state vector *
7 which stores information about the received group messages.

The state vector represents a vector clock .
Each message N of sender S has a unique number; message numbers are linearly ordered with increasing
numbers.
Let j be a group member of the group G.

the state vector zj = (z;)i = ¢1....n Specifies the number of messages received in sequence from group
member i.

Example: z; = k; k is the number of the last message sent by member i & G and received in
correct sequence by the group member j.

at group initialization all state vectors are reset (all components are 0).

Sending a message N; | = G sends a message to all other group members.

zj = zj + 1; the current state vector is appended to N and sent to all group members.

Receiving a message N sent by member i € G.

Message N contains state vector z; . There are two conditions for delivery of N to the application
process of j

(Clyzi=zi-1.

(C2: ¥k #=izi <z

Group communication in ISIS e 1‘)

The 1818 system developed at Cornell University is a framework for reliable distributed computing based upon
process groups. It specifically supports group communication. Successor of 1SIS was .

1818 is a toolkit whose basic functions include pIocess group management and ordered multicast primitives
for communication with the members of the process group.

abcast: totally ordered multicast.

chcast: causally ordered multicast.

ahcast protocol
chcast protocol

cbeast protocol

-~ 3

causal broadcast guarantees the correct sequence of message delivery for causally related messages.

Concurrent messages can be delivered in any sequence; this approach minimizes message delay.

Introduction

Algorithm of the chcast protocol

JGroups e T 'f JGroups 'S T

is a reliable group communication toolkit written in Java. It is based on IP multicast and extends it ~ PNCILY, SepTLIALy VLI Ut iuesaye anu sy -
with management of group membership.
reliability, especially ordering of messages and atomicity. [
Programming Interface of JGroups CJ d’ke SOCIC{F MJ!‘O‘M‘“M -'J‘-“‘J Mduor
management of group membership. groups are identified via channels. & /
Programming Interface of JGroups channel.connect("MYGr(O“P") Mg JJ #00‘!'0
groups are identified via channels. a channel is connected to a protocol stack specifying its properties.
channel . connect("MyGroup"):
application
a channel is connected to a protocol stack specifying its properties. I
application :" S Total ordering of messages
equencer . .
I | using a coordinator X
1
|
- GMS i
[% :_ Sequencer Total ordering of messages DIG‘CI"CO\ : group membership layer
I 4 using a coordinator stac | .
1 | Frag fragmentation layer
protocol : GMS group membership layer :
stack | | upPp
: Frag fragmentation layer L.
f uDP AT
L. [network)
3 - S
/
- ~
(" natwork) 3 Code Example @
Code Example T Distributed Consensus — T —
String props = "UDP:Frag:GMS:causal": problem of distributed processes to agree on a value; processes communicate by message passing.
Message send_msqg; Examples
Object recv_msg; all correct computers controlling a spaceship should decide to proceed with landing, or all of them
Channel channel = new JChannel (props): should decide to abort (after each has proposed one action or the other)
channel.connect("MyGroup"): in an electronic money transfer transaction, all involved processes must consistently agree on whether
send_msg = new Message(null. null. "hello World"): to perform the transaction (debit and credit), or not
channel . send(send_msg) :)) .
{ -msg) desirable: reaching consensus even in the presence of faults
recv_msg = (Message) channel.receive(0):
. . assumption: communication is reliable, but processes may fail
System.out.println("Received " + recv_msg):
channel .disconnect(): Consensus Problem
channel.close(): Consensus in synchronous Networks

Consensus Problem) B3 F Properties)

agreement on the value of a decision variable d, amongst all correct processes The following conditions should hold for every execution of the algorithm:
p; is in state undecided and proposes a single value v; , drawn from a set of values. termination : eventually, each correct process sets its decision variable
agreement : the decision variable of all correct processes is the same in the decided state.

next, processes communicate with each other to exchange values.)
integrity : if the correct processes all proposed the same value, then any correct process has chosen that

in doing so, p; sets decision variable d; and enters the decided state after which the value of d; remains value in the decided state.
unchanged

@ d1 := proceed

v1 = proceed

v2 = proceed

Properties %
Algorithm
The Byzantine Generals Problem

Interactive Consistency Problem

Algorithm The Byzantine Generals Problem e T —)
algorithm to solve consensus in a failure-free environment three or more generals are to agree to attack or to retreat. i
each process reliably multicasts proposed values one general, the commander issues order
after receiving response, solves consensus function majority(ve va). others (lieutenants to the commander) have to decide to attack or retreat
which returns most often proposed value, or undefined if no majority exists. one of the generals may be treacherous

properties: if commander is treacherous, it proposes attacking to one general and retreating to the other

if lieutenants are treacherous, they tell one of their peers that commander ordered to attack, and

termination guaranteed by reliability of multicast.
rmination guar ¥ TElERIy OF mu others that commander ordered to retreat

agreement, integrity: by definition of majority, and the integrity of reliable multicast (all processes solve °
same function on same data). (]

when crashes occur

how to detect failure?
will algorithm terminate?

when byzantine failures occur

processes communicate random values.

evaluation of consensus function may be inconsistent.

malevolent processes may deliberately propose false or inconsistent values.

difference to consensus problem: one process supplies a value that others have to agree on

Aranackino.

The Byzantine Generals Problem — 1 ¥ Interactive Consistency Problem — 1

LU L TG L U U S I WG, LUy LU U U LU U L DU A UGS U LU LI, L &

others that commander ordered to retreat Each process suggests & single value.
: ® goal : all correct processes agree on a vector of values ("decision vector"); each component correspond to
o one processes’ agreed value

example: agreement about each processes' local state.
properties:
termination: eventually each correct process sets its decision vector.

agreement: the decision vector of all correct processes is the same.

integrity: if pi is correct, then all correct processes decide on v as the i-th component of their vector.

Genera

difference to consensus problem: one process supplies a value that others have to agree on
properties:

termination: eventually each correct process sets its decision variable.

agreement: the decision value of all correct processes is thelEETa:

s
integrity: if the commander is correct, then all processes decide on the value that the commander
pProposes.
Generated by Targeream |y
Consensus in synchronous Networks o T Distributed Applications - Verteilte Anwendungen s
Assumption : no more than f of the n processes crash (f < n). = Prof. J. Schlichter
The algorithm proceeds in f+1 rounds in order to reach consensus. = Lehrstuhl fiir Angewandte Informatik / Kooperative Systeme, Fakultat fir Informatik, TU Minchen
the processes B-multicast values between them. = Bolizmannstr. 3, 85748 Garching
at the end of f+1 rounds, all surviving processes are in a position to agree. Email: jschlichter @in.tum.de|
algorithm for process p; € concensus group g Tel.: 089-289 18654
On initialization URL: hitp:/Awww11.in.tum.de/
values; (1) := {vi }: values; (0) := {}: i
Overview
in round r (1 € r £ f+1) Introduction

B-multicast(g, valuesi (r)-valuesi (r-1)): Architecture of distributed systems

Remote Invocation (RPC/RMI)
Basic mechanisms for distributed applications

sssend only values that have not been sent

values; (r+1[}) := values; (r)

while (in round r) { Web Services
Oon B-deliver(v; from some pj
vi) Pi Design of distributed applications

values; (r+1) := wvalues; (r+1) U vy
) Distributed file service
Distributed Shared Memory

After (f+1) rounds Object-based Distributed Systems

Summary

assign di = minimum (values; (f+1))

