va-ss14ywhiteboardiva_course4.him| ||| x| |IB B |- |3 X

I
< Favoriten o @ ~ E|Enf g]vaE

(& Remote Invocation (RPC/RMI)

Script generated by TTT Issues
Introduction

Distributed applications based on RPC
Remote Method Invocation (RMI)
Servlets

Title: Distributed_Applications (19.05.2014)

Date: Mon May 19 09:18:13 CEST 2014
Duration: 45:07 min

Pages: 15

f Serviets o T Servlet Properties T —)
Servlets (Java Servlets) are programs invoked by a client and executed on the server host: execution of a servlet in the context provided by the servlet engine.
used to extend the functionality of the server. Apache Tomcat] : free, open-source implementation of Java servlet technology.

methods specified within each servlet object and invoked by the serviet engine

serviet engine

serviet 1 init: when a servlet is initialized.
X code
cllnt1 shutdown: when a servlet is no longer needed.

serviet 2
code service: when a client request is forwarded to the serviet.
serviets are invoked via HTTP requests (get or post method), e.q.

<form method="post"

Serviet Properties Bction="http: myhost:8080/servlietsformServliet">
Serviet Lifecycle arguments of the form

HttpServiet Interface o
Structure of a Servlet

HttpServiet Interface — T

Structure of a Servlet — T

HttpServlet inherits abstract class GenericServlet which implements interfaces Servlet and ServletConfig. import javax.servlet.*;

GenericServlet defines a generic protocol-independent servlet import javax.servlet.http.*
HttpServiet defines a servlet for the HTTP protocol import java.io.*;
public class MyServlet extends HttpServlet {
Jjavax.servlet http HttpServiet ——->| javax.serviet.GenericServiet f-— - javax.servlet. Serviet A L. A
#** called by the servlet engine to initialize servlet *~
doGet (req:HttpServletRequest, init (config: ServietConfig): void public void init() throws ServletException { }
service (req: ServletRequest, #** process the HTTP Get request */

: ServietR : void
doPost (req:HttpServietRequest, resp: ServietResponse): voi

resp: HttpServletResponse): void

public void doGet{HttpServletRequest request. HttpServletResponse
destroy(): void response) throws ServletException. IOEXception { }

#** process the HTTP Post request */

T
|
|
|

resp: HitpServletResponse): void I
|
|
|
|
|

doDelete (req:HttpServietRequest, :

resp: HitpServletResponse): void - javax.servlet.ServletConfig public wvoid doPost(HttpServletRequest request. HttpServletResponse
responsge) throws ServletException, IOEXception { }
doPut(req:Http{ervietRequest, resp: getinitParameter (name: String): #** called by the servlet engine to release the resource */
HitpServiletResponse): void String .]
public void destroy () { }
getInitParameterNames ()
Enumeration ~7 other methods
getServietContext(): ServietCon }
getServietName(): String Example - CurrentTime

doGet is invoked to respond to a GET request

doPost is invoked to respond to a POST request

doDelete is invoked to respond to a DELETE request; normally used to delete a file on the server

:f Example - CurrentTime T Servlets — @
import javax.servlet.*: Servlets (Java Servlets) are programs invoked by a client and executed on the server host:

import javax.servlet.http.* used to extend the functionality of the server.

import java.io.*;

serviet engine
public class CurrentTime extends HttpServlet {
code
#** process the HTTP Get request *~ client 1 -
server 1
servlet 2
code
response.setContentType('text /html'): - serviet 3
. . . client 3 server 2
PrintWriter out = response.getWriter(): code

out.println("<p>The current time is " + new java.util.Date()):

public void doGet (HttpServletRequest request. HttpServletResponse
response) throws ServletException, IOEXception {

client 2

Servlet Properties
Servlet Lifecycle

out.close(): -~ close stream

}
} HttpServiet Interface
Structure of a Servlet
Invocation

http://localhost:8080/.../serviet/CurrentTime

Ik

Basic mechanisms for distributed applications — T) 'f External data representation T —

Heterogeneous environment means different data representations

Issues

The following section discusses several important basic issues of distributed applications. = requirement to enable data transformation.

Data representaion in heterogeneous environments. independence from hardware characteristics while exchanging messages means: use of external data
Discussion of an execution model for distributed applications. representation.

i onri ror ina? g
What is the appropriate error handling? Marshalling and unmarshallin

What are the characteristics of distributed transactions? Centralized transformation

What are the basic aspects of group communication (e.g. algorithms used by ISIS) * Decentralized transformation

How are messages propagated and delivered within a process group in order to maintain a consistent
state?

Common external data representation

XML as common data representation
Java Object Serializatk)n

External data representation

Time

Distributed execution model [;

Failure handling in distributed applications

Distributed transactions

Group communication

Distributed Consensus

Authentication service Kerberos

Marshalling and unmarshalling

External data representation @)

Heterogeneous environment means different data representations

marshaling of unmarshaling of -
- arguments 7| arguments) = requirement to enable data transformation.
client | | server
: unmarshaling of |¢ marshaling of [*— , . . .
/‘ results 9ot e resultsg S independence from hardware characteristics while exchanging messages means: use of external data
representation.

data stream across
the network Marshalling and unmarshalling

marshal : parameter serialization to a data stream. Centralized transformation

Decentralized transformation

unmarshal : data stream extraction and reassembly of arguments.
Common external data representation

software for argument transformation either provided by RPC system or as plugin by the application programmer. XML as common data representation

Java Object Serialization

Decentralized transformation

— T -»

(ot (oo

N N,

">~ transformation -~~~

All nodes execute data transformations.

Variants
A transforms data which are then sent to B; B transforms data which are then sent to A.
A transforms data by B; B transforms data by A.

A and B transform data in a network-wide standard format; the respective recipients retransform the received
data into the local format.

If new system components are dynamically added to the distributed system, the new system
components simply have to "learn” about the network-wide unique standard representation.

No special hardware is required.

Example: XDR as part of ONC by Sun.

Representation of numbers

T~

For the representation of numbers in main memory, one of the following methods are generally used.
“little endian” representation: the lower part of a number is stored in the lower memory area

"big endian” representation: the higher part of a number is stored in the lower memory area, e.g. the Sun-
Sparc architecture
Example representation of the number 1347

Memory

Address 1000 1001 1002 1003

Big Endian |00000000 |00000000 ‘00000101 |o1oooo11 |

Little Endian | 01000011 |00000101 ‘oooooooo |oooooooo |

Convention: tor network transfer, numbers which encompass several bytes are structured according to a well
-defined representation, such as "big endian”.

Common external data representation e 1‘ —)

Two aspects of a common external data representation are of importance:

a machine-independent format for data representation, and

a language for description of complex data structures.
Examples: XDR ("eXternal Data Representation”) by Sun and (Abstract Syntax Notation). Other formats
are
Corba's common data representation: structured and primitive types can be passed as arguments and
resulis.
Java's object serialization: flattening of single objects or tree of objects.

Representation of numbers
External representation of strings
External representation of arrays
Transfer of pointers

External representation of strings e T /-%-.3

There are different internal representations for strings:

Crabe" ——[a [b [c[w0]
Pascal: "abc” _Pl 3 | a | b | c |

Standardized external representation:

4 bytes n bytes

length n byteO [byte1 | ... [byten1| 0 |.[0 |

4+ n + r(with (n+r) mod 4 = 0)

