Script generated by TTT

Title: Petter: Compilerbau (05.07.2018)
Date: Thu Jul 05 14:15:10 CEST 2018
Duration: 84:59 min

Pages: 24

Equality of Types

Summary of Type Checking

@ Choosing which rule to apply at an AST node is determined by
the type of the child nodes

@ determining the rule requires a check for ~ equality of types

type equality in C:
@ struct A {} and struct B {} are considered to be different

e ~» the compiler could re-order the fields of A and B independently
(not allowed in C)

o to extend an record A with more fields, it has to be embedded into
another record:

struct B {

struct A;

int field_of_B;
} extension_of_ A;

@ after issuing typedef int C; the types C and int are the
same

224 /287

Type Systems for C-like Languages

More rules for typing an expression:

Array: I' Fey F /:61[62? :l— ;22 : int

Anay: — :1“ /‘l—Hel[62]F:|_f,62 e

Struct: I'Fe: Stlel—Cte.\g{L[il :al;j--/m A }

App: D ke t(ty,. fm')_e(elr’t:e;mz) /1 - D Fem i tm
Op [r er:kliglu; :Ffz 1]

Explicit Cast: Lhe: b - F’a(fjnebf ignverted to ¢

Structural Type Equality

Alternative interpretation of type equality (does not hold in C):

semantically, two types t1, ¢ can be considered as equal if they
accept the same set of access paths.

Example:
struct list {
int info; int info;
struct lists next; struct ({
} int info;
struct listl*x next;
}* next;

struct listl {

. . }
Consider declarations struct list+ 1 and struct listls 1.
Both allow
1->info 1l->next—>info

but the two declarations of 1 have unequal types in C.

220/287

225/287

Algorithm for Testing Structural Equality

ldea:

@ track a set of equivalence queries of type expressions
@ if two types are syntactically equal, we stop and report success

@ otherwise, reduce the equivalence query to a several
equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:
typedef At

(we omit the I'). Then define the following rules:

Example:
typedef struct {int info; A * next;} A
typedef struct {int into; struct {int info; B xnext; } x next.} 5

We ask, for instance, if the following equality holds:
struct {int info; A % next;} = B

We construct the following deduction tree:

226 /287

228 /287

Rules for Well-Typedness

oo o] L]
n 15 nn
struct {si[ai} ... s, fam} f[struct {t:[at: ... t. fd }]

a Am,

‘81 Yf1| LI EZI

Proof for the Example:
struct {int info; ext; } A
struct {int info;ﬁ;lh_imm@ next; } B
@int info; A *next; } M

I struct{int info;(‘ljn_ej_’_c;} struct{int info; ... * next; } ‘

il noel,
i N v v

typedef
typedef

| |A| struct{int info; B next;} |
TN
| struct{int info; A xnext; } }truct{int info; B * next; } ‘
ih{o e

int | int | - [A+]B 4
u [4]B]
N

‘ struct{int info; A xnext; } (B ‘

typedef s A

227287

229/287

Implementation

We implement a function that implements the equivalence query for
two types by applying the deduction rules:

@ if no deduction rule applies, then the two types are not equal

@ if the deduction rule for expanding a type definition applies, the
function is called recursively with a potentially larger type

@ in case an equivalence query appears a second time, the types
are| equal by definition |

Example: Subtyping

Extending the subtype relationship to more complex types, observe:

string extractInfo (
return x.info;

struct { string info; } x) {

}

@ we want extractInfo to be applicable to all argument
structures that return a st ring typed field for accessor info

@ the idea of subtyping on values is related to subclasses
@ we use deduction rules to describe when ¢, < #5|should hold...

230/287

232/287

Subtypes

On the arithmetic basic types char, int, long, étc.
rich subtype hierarchy

there exists a

Subtypes

t1 < t5, means that the values of type ¢,
@ form a subset of the values of type #-;
@ can be converted into a value of type ¢5;
© fulfill the requirements of type t.;
© are assignable to variables of type 2.

¢, 6L,

Rules for Well-Typedness of Subtyping
fFsr]
= [s]¢]

\ struct { s]ai} ...

sj aj; } | struct {#; |a]j; - g Ok} }\

ai - Qg
I‘ZIE . J'Z k

struct {int u,int v} x;

struct {int u} oy

231/287

[ggiiiltypedef s A

233/287

Rules and Examples for Subtyping

’ 50 (317---75m) ‘ t() (tl,...,t,n) ‘

Examples:
struct {int a; int b; } struct {float a; }

int (int) float (float)
int) (float) float (int)

234 /287

Subtypes: Application of Rules (I)
Check if S, < R;: lVLL

Ry = struct {inta; Ry (R1) f;}
S1 = struct {int a; int b; S1(S1) f;}
Ry, = struct {int a; R2(S2) f;}
Sy = struct {int a; int b; So (R2) f;}
S1| Ry
a J
int | int | S1(5) | B (Ry) |

EALA AN

4 f

&

235/287

Rules and Examples for Subtyping

I S0 (81,...,3m) ‘ t() (tl,...,tm) ‘

Examples:

struct {int a; int b; } struct {float a; }
int (int) float (float)
int (float) float (int)

Definition
Given two function types in subtype relation
So(81,.-.5n) <to(t1,...t,) then we have
@ co-variance of the return type s¢ < to and
@ contra-variance of the arguments s; > ¢; fir1 <i <n

Subtypes: Application of Rules (Il)
Check if 55 < S5:

Ry = struct {inta; R1 (R1) f;}

= struct {int a; int b; S1 (S1) f;}
Ry = struct {int a; R2(S2) f;}

= struct {int a; int b; S> (R2) f;}

234/287

236/287

Discussion Subtypes: Application of Rules (lll)
Check if Sg < Rl:
Ry = struct {inta; R (R1) f;}
S1 = struct {int a; int b; S1 (S1) f;}
Ry = struct {inta; R2(52) f;}
Sy = struct {int a; int b; S2 (R2) f;}
@ for presentational purposes, proof trees are often abbreviated by Sa| Ry
omitting deductions within the tree f
@ structural sub-types are very powerful and can be quite intricate int | int ‘ ‘ S5 (R2) | Ry (Ry) ‘
to understand
@ Java generalizes structs to objects/classes where a sub-class A
inheriting form base class O is a subtype A < O [| |52 Rl‘ ‘Rl Rz‘
@ subtype relations between classes must be explicitly declared a f
| int | int ‘ | Rl (Rl) | Rz (Sz) ‘
= [Ri|R)] [Se[R)]
238/287 237/287
Discussion
@ for presentational purposes, proof trees are often abbreviated by Chapter 1:
omitting deductions within the tree . .
@ structural sub-types are very powerful and can be quite intricate The RegISter C-Machine
to understand
@ Java generalizes structs to objects/classes where a sub-class A
inheriting form base class O is a subtype A < O
@ subtype relations between classes must be explicitly declared
238/287 241/287

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

@ there exists no processor that can execute its instructions

@ ... but we can build an interpreter for it

@ we provide a visualization environment for the R-CMa

@ the R-CMa has no double, float, char, short or long types

@ the R-CMa has no instructions to communicate with the
operating system
@ the R-CMa has an unlimited supply of registers

242/287

Components of a Virtual Machine

Consider Java as an example:

c L1

0 1 T

[] rpC

s N |
0 T DSP

A virtual machine such as the Dalvik VM has the following structure:
@ S:the data store — a memory region in which cells can be stored
in LIFO order ~» stack.
@ SP: (= stack pointer) pointer to the last used cell in S
@ beyond S follows the memory containing the heap

244 /287

Virtual Machines

A virtual machine has the following ingredients:
@ any virtual machine provides g set of instructions |
@ instructions are executed on| virtual hardware |

@ the virtual hardware is a collection of|data structures|that is
accessed and modified by the VM instructions

@ ... and also by other components of the run-time system, namely
functions that go beyond the instruction semantics

@ the interpreter is part of the run-time system

Executing a Program

@ the machine loads an instruction from C[PC] jinto the instruction

registe order to execute it

@ before evaluating the instruction, thel PClis incremented by one

while (true) {

IR = C[PC]; |PC++;|

| execute (IR)

}

243/287

@ |node: the PC must be incremented before the execution, since
an instruction may modify the PC

@ |the loop is exited by evaluating 4 halt|instruction that returns
directly to the operating system

245/287

[]

Chapter 2:
Generating Code for the Register C-Machine

246 /287

