Script generated by TTT

Title: Petter: Compilerbau (28.06.2018)
Date: Thu Jun 28 14:16:03 CEST 2018
Duration: 83:16 min

Pages: 25

Symbol Tables

\

Consider the following Java code:
roid £ -
ot 060 | @ within the body of the loop, the
int . p
; definition of 2 is shadowed by the
while (true) { .
double A: local definition
&= 0.5; @ each declaration of a variable v
write (&) requires allocating memory for v
break; @ accessing v requires finding the
} declaration the access is boundto
[A]= 2 @ a binding is not visible when a
balj ()i local declaration of the same
write (A); name is in scope

201/288

Chapter 2:

Decl-Use Analysis

Scope of Identifiers

void foo () {

int A;
while (true) ({

double A;
A = 0.5;
write (A);
break;

:

}

A = 2;
bar () ;
write (A);

q

scope of int A

200/288

202/288

Rapid Access: Replace Strings with Integers

Idea for Algorithm:
Input: a sequence of strings
Output: @ sequence of numbers
@ table that allows to retrieve the string that
corresponds to a number
Apply this algorithm on each identifier during scanning.

Implementation approach:

@ count the number of new-found identifiers in int count
@ maintain a jhashtable S : String — int fo remember numbers
for known identifiers

We thus define the function:

int indexForldentifier(String w) {
if (S (w) = undefined) {
S = {w — count};
return count+;
} else return S (w);

b

204 /288

Example: Replacing Strings with Integers

Input:
| Peter | Piper | picked | a | peck | of | pickled | peppers

If | Peter | Piper | picked | a | peck | of | pickled | peppers

wheres | the | peck | of | pickled | peppers | Peter | Piper | picked |

Output:

206 /288

Implementation: Hashtables for Strings

@ allocate an array M of sufficient size m
@ choose a hash function H : String — [0, m — 1] with:

e H(w) is cheap to compute
e H distributes the occurring words equally over [0, m — 1]

Possible generic choices for sequence types (7 =|{(zq, ... T,_1)):

Ho(Z) = | xo + Tr—1) %m |
(@) = (Y @-p)%m |
= @Fp @ Fp . .+p-z1))%m
for some prime number p (e.g. 31)

X The hash value of w may not be unique!

— Append (w, %) to a linked list located at M [H (w)]
e Finding the index for w, we compare w with all z for which
H(w) = H(z)
v/ access on average:
insert: O(1)
lookup: O(1)

205/288

Refer Uses to Declarations: Symbol Tables

Check for the correct usage of variables:

@ Traverse the syntax tree in a suitable sequence, such that

@ each declaration is visited before its use
e the currently visible declaration is the last one visited

~~ perfect for an L-attributed grammar
@ equation system for basic block must add and remove identifiers
@ for each identifier, we manage a sfack of declarations
@ if we visit a declaration, we push it onto the stack of its identifier
@ upon leaving the scope, we remove it from the stack
@ if we visit a usage of an identifier, we pick the top-most
declaration from its stack

@ if the stack of the identifier is empty, we have found an
undeclared identifier

207/288

Example: A Table of Stacks

// Abstract locations 1n comments

1

I

3 int a, b; // V, W

4 b = 5;

5 if (b>3) {

6 int a, c; // X, Y
7

8

9

a = 3;
c =a + 1;
b = c;
10 } else {
11 int c; /7 Z
12 c =a + 1;
13 b = c;
14 }
15 b =a + b;
16

Alternative Implementations for Symbol Tables

@ when using a list to store the symbol table, storing a marker

—_

—_

—_

indicating the old head of the list is sufficient

in front of if-statement

208/288

210/288

Decl-Use Analysis: Annotating the Syntax Tree

d declaration node
b basic block
a assignment

Type Definitions in C

A type definition is a synonym for a type expression.
In C they are introduced using the typedef keyword.

Type definitions are useful
@ as abbreviation:

209/288

struct { int x; int vy; };

@ to construct recursive types:

Possible declaration in C:

more readable:

struct list {

int info;

struct list* next;
}

struct list+ head;

typedef struct list list_t;
struct list {
int info;
list_t* next;
t
list_t«* head;

211/288

Type Definitions in C

The C grammar distinguishes t ypedef-name and identifier.
Consider the following declarations:

typedef struct { int x,y } point_t;¥
fpoint_t’origin;

Relevant C grammar:
declaration —

(declaration-specifier)* declarator ;

declaration-specifier — static|volatile...typedef
| void | char | char ... typename

declarator — identifier |...

Chapter 3:
Type Checking

212/288

214/288

Type Definitions in C: Solutions
Relevant C grammar:

(declaration-specifier)* declarator ;4
static|volatile--- typedef

| void | char | char -+ typename
identifier |---

declaration —
declaration-specifier —

declarator —

Solution is difficult:

Type Expressions

Types are given using type-expressions.
The set of type expressions 7' contains:

@ base types: int, char, £loat, void, ...
@ type constructors that can be applied to other types

213/288

216/288

Type Checking

Problem:

Given: A set of type declarations T = {t1 z1;... Ly Tm; }
Check: Can an expression e be given the type ¢?

217/288

Type Systems

Formally: consider judgements of the form:
ke : t

// (in the type environment I" the expression e has type t)

Axioms:
Const: T Fec: i, (t. type of constant c)
Var: 'tz I'(z) (x Variable)
Rules:
) I'kFe: t o I''Fe: tx
Ref: I'F&e : % Deref: I kFxe:

219/288

Type Checking using the Syntax Tree

Check the expression xa [f (b—->c)] +2:

e
=5 =

SN

|dea:
@ traverse the syntax tree bottom-up
@ for each identifier, we lookup its type in I
@ constants such as 2 or 0.5 have a fixed type

@ the types of the inner nodes of the tree are deduced using typing
rules

Type Systems for C-like Languages

More rules for typing an expression:

218/288

Array: I' Fey F /:61[62? :l— ;22 : int

Array: I ke :r /FHel[ez}F:Fr,eQ . int

Struct: I'Fe: Stlel—Cte.gl :al;j--/m A }

App: Dke: tt fi)_e(elrkeém) /1 - D Fepm : tm
Op [: r |_61F:|_;DEZF :l—fQ cot

Explicit Cast: The: t . F’a(gn&bﬁa C;vaerted to

220/288

Example: Type Checking

Given expression xa [f (b->c)] +2 and

I ={
struct list { int info; struct list+ next; };
int f(struct list* 1);
struct { struct listx c;}* b;
int+x a[ll];
} N

221/288

Example: Type Checking — More formally:

Given expression =a [f (b->c)] +2:

—

L L

u—af(b‘/]

Thkxa[f(b—c)]:t
TExalf(b—co)]+2:1

DEREF CONST

I'k2:t
orp

223/288

Example: Type Checking

Given expression *xa [f (b->c)] +2:

int <[] B/ 4\int
int (struct list) E D struct list «
RN
]

struct {struct list « c;

struct {struct list = c;} =

Equality of Types

Summary of Type Checking

@ Choosing which rule to apply at an AST node is determined by
the type of the child nodes

@ determining the rule requires a check for ~ equality of types

type equality in C:

@ struct A {} and struct B {} are considered to be different

e ~» the compiler could re-order the fields of 2 and B independently
(not allowed in C)

o to extend an record A with more fields, it has to be embedded into
another record:

struct B {

struct A;

int field_of_B;
} extension_of_A;

@ after issuing typedef int C;
same

the types C and int are the

222/288

224/288

Structural Type Equality

Alternative interpretation of type equality (does not hold in C):

semantically, two types t1, 1> can be considered as equal if they
accept the same set of access paths.

Example:
struct list { struct listl {
int info; int m
struct list* next; struct

struct listl~«

Nrey

1

Consider declarations struct list* 1 and struct listls 1.
Both allow

1->info 1l->next->info

but the two declarations of 1 have unequal types in C.

225/288

Algorithm for Testing Structural Equality

|dea:

@ track a set of equivalence queries of type expressions
@ if two types are syntactically equal, we stop and report success

@ otherwise, reduce the equivalence query to a several
equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:

typedef At

(we omit the I'). Then define the following rules:

226/288

