Script generated by TTT

Title: Simon: Compilerbau (07.07.2014) Chapter 1:
Date: Mon Jul 07 14:17:59 CEST 2014 Data Structures in Memory

Duration: 84:04 min

Pages: 80
Variables in Memory: L-Value and R-Value Address Environment
Variables can be used in two different ways. A variable by stored in four different ways:
example: a[x] = v + 1 @ Global: a variable is global
© Local~&variabf&tsstored on the stack frame
for y we need to know the value of the memory cell, for a[x] we are © Register: a variable is stored in a local register R; or a global
interested in the address register R, E—
r-value of x = content of x
l-value of x = address of x - K=
compute r- and I-value in register R;:
code,, e p | generates code to compute the r-value of e, given
the environment p
code! e p | analogously for the I-value
L el
note:
Not every expression has an l-value (e.g.: x + 1).
65/103 66/103

Address Environment

A variable by stored in four different ways:
@ Global: a variable is global
. |
© Local: a variable is stored on the stack frame

© Register: a variable is stored in a local register R; or a global
register R;

66/103

Address Environment

A variable by stored in four different ways:
@ Global: a variable is global
@ Local: a variable is stored on the stack frame

© Register: a variable is stored in a local register R; or a global
register R,

accordingly, we define p : Var — {G,L,R} x Z as follows:
@ px = (G,a): variable x is stored at absolute address a
@ px = (L,a): variable x is stored at address FP + a
@ px = (R,a): variable x is stored in register R,

Observe: a variable x can only have one entry in p
However:

66/103

Address Environment

A variable by stored in four different ways:
@ Global: a variable is global
© Local: a variable is stored on the stack frame

© Register: a variable is stored in a local register R; or a global
register R;

accordingly, we define p : Var — {G,L,R} X Z as follows:
@ px= gc_:,,cQ: varié-l-o.Ie x is stored at absolute address a
@ px= _(_&g): variable x is stored at address_fg_;u
@ px= (R, a): variable x is stored in register R,

66/103

Address Environment

A variable by stored in four different ways:
@ Gilobal: a variable is global
@ Local: a variable is stored on the stack frame

© Register: a variable is stored in a local register R; or a global
register R,

accordingly, we define p : Var — {G, L,R} x Z as follows:
@ px = (G,a): variable x is stored at absolute address «a
® px= (L,a): variable x is stored at address FP + a
® ;x = (R,q): variable x is stored in register R,

Observe: a variable x can only have one entry in p
However:

@ p may be change with the program point
@ that is, x may be assigned to a register at one point
@ andto a memory location at another program point

66/103

Necessity of Storing Variables in Memory
7 —
Global variables:

@ could be assigned throughout to
registers R, ... R,

e

Z.
)
X:

Furthermore:

67/103

Necessity of Storing Variables in Memory

Global variables:

@ could be assigned throughout to
registers R, ... R,

@ separate compilation becomes difficult,
since code of function depends on n

Furthermore:

67/103

Necessity of Storing Variables in Memory

] Global variables:

@ could be assigned throughout to
registers R, ...R,

Furthermore:

67/103

Necessity of Storing Variables in Memory

] Global variables:

@ could be assigned throughout to
registers R, ... R,

— @ separate compilation becomes difficult,

i - since code of function depends on n
] @ simple solution: store global variables in
memory
Furthermore:

67/103

Necessity of Storing Variables in Memory

Global variables:

@ could be assigned throughout to
registers R, ... R,

@ separate compilation becomes difficult,

i since code of function depends on
@ simple solution: store global variables in
memory
Furthermore:

® avariable x (int or struct) whose address has been taken
must be stored in memory, i.e. px = (L0} or px = (G, 0)
- -

67/103

Necessity of Storing Variables in Memory

Global variables:

@ could be assigned throughout to
registers R, ... R,

@ separate compilation becomes difficult,

i since code of function depends on n
@ simple solution: store global variables in
memory
Furthermore:

@ avariable x (int or struct) whose address has been taken
must be stored in memory, i.e. p x = (L,0} or px = (G, 0)

@ an access to an array is always done through a pointer, hence, it
must be stored in memory

@ optimization: store individual elements of a struct in register
while no pointer accesses may reach the structure

67/103

Necessity of Storing Variables in Memory

Global variables:

@ could be assigned throughout to
registers R, ...R,

@ separate compilation becomes difficult,

i - since code of function depends on »
] @ simple solution: store global variables in
memory
Furthermore:

@ avariable x (int or struct) whose address has been taken
must be stored in memory, i.e. px = {L,0) or px = (G, 0)

@ an access to an array is always done through a pointer, hence, it
must be stored in memory

Translation of Statements

Statements such as x=2xy have so far been translated by:
@ computing the r-value of 2 «+y in register R;,
@ copying the content of R; into the register p(x)

—

formally: let p(x) = (R,j) then:
—_— i
codey x=e;p = codek e; p

move R; R;
*' ———

67

103

68/103

Translation of Statements

Statements such as x=2 vy have so far been translated by:

@ computing the r-value of 2y in register Rr;,
@ copying the content of &; into the register p(x)

formally: let p(x) = (R,j) then:

codep x =€z p = codeg e p

move R; R;

but: undefined result if p x = (L,a) or p x = (G, a).

a— - L

68/103

Translation of L-Values
new instruction: store R; R; with semantics S[R;| = R;

hagnd

Ri 3R]

store Ri Rj

definition for assignments:
code’ e p = codek e p
A ——

So how do we translate x = e (with px = (G, a})?

69/103

Translation of Statements

Statements such as x=2«y have so far been translated by:

@ computing the r-value of 2 «+y in register R,
@ copying the content of &; into the register p(x)

formally: let p(x) = (R,j) then:

codep x =e2p = codeh ez p

move R; R;

but: undefined resultif p x = (L.a) of px = (G, a).
idea: 2o “Lg
@ compute the r-value of e in register R;,
@ compute the |-value ofg_,_in register R,., and
@ write e, to address ¢; using a store instruction

—

68/103

Translation of L-Values
new instruction: store R; R; with semantics S[R;| = R;

Ri Rj

store RiRj

13

definition for assignments:
code’ e p = codek e p
So how do we translate x = e (with px = (G, a))?
@ Thus, for the case ¢; = xand p x = (R,) does not hold:
.- ——— .
codey ey =ey p = codey ez p
codef"_e_! p
store R, R;

——

69/103

Translation of L-Values
new instruction: store R; R; with semantics S(R;| = R;

Ri T3 R

store RiRj

definition for assignments:
code’ e p = n:odf:f2 ep
So how do we translate x = e (with px = (G, a))?
@ Thus, for the case ¢, = xand p x = (R, ;) does not hold:
codei2 er=ep = codeiz e p
- i+1
code|
store R;.1 R;

e

@ The |-value of a variable is computed as follows:

codef x p = loadcR; &
e — - -
69/103

Access to Local Variables

Accesses to local variables are relative to FP. We therefore modify
code to cater for variables in memory. g() (
//t-//" X

code! x p = loadrc R; a if px = (L, a) S

For p x = (L, a) we define

. ‘_g
Instruction loadre R; k computes the sum of FP and k.

e EH R

k I loadrc Ri k

Ri=FP+k

71/103

Allocating Memory for Local Variables

Given: a function with &£ local int variables that need to be stored in
memory.

alloc k

ﬂ = |

alloc k SP =SP +k;
pop k SP =SSP -k;

The instruction alloc k reserves space for k variables on the stack,
pop k frees this space again.

70/103

General Computation of the L-Value of a Variable

Computing the address of a variable in R; is done as follows:

—
if px = (G.a)
if px=(L,a)

-

loadc R; a

. i —
wdeLf P= { loadre R; a

72/103

General Computation of the L-Value of a Variable

Computing the address of a variable in R, is done as follows:

if px =(G,a)
if px = {L,a)

loade R; a

odel x p =
codey x p { loadre R; a

Note: for px = (R, j) the function code{ is not defined!
- e

72/103

General Computation of the L-Value of a Variable

Computing the address of a variable in R; is done as follows:

loadc R; a
loadre R; a

if px=(G,a)

code] x p = { if px=(L.a)

Note: for px = (R, j) the function code! is not defined!

Observations:
@ intuitively: a register has no address

@ during the compilation the |-value of a register may never be
computed

@ this requires a case distinction for assignments
_—-——'——"—-

72/103

General Computation of the L-Value of a Variable

Computing the address of a variable in R; is done as follows:

if px=1{(G.,a)
if px = (L,a)

loade R; a

odel x p =
codey x p { loadrec R; a

el

Note: for px = (R, j) the function code! is not defined!

Observations:

72/103

Macro-Command for Accessing Local Variables
Define: the command load R; R; sets R; to the value at address R;.

73/103

Macro-Command for Accessing Local Variables
Define: the command load R; R; sets R; to the value at address R;.

Thus: loadre R; a;load R; R;: sets R; to x where p x = (L, a).

73/103

Macro-Command for Accessing Local Variables
Define: the command loafljR,- R; sets R; to the value at address R;.

~
Thus: loadrc R; a;load R; R;: sets R; to x where p x = (L, a).

— e

1

73/103

Macro-Command for Accessing Local Variables
Define: the command load R; K; sets £; to the value at address R;.

Macro-Command for Accessing Local Variables
Define: the command load R; R; sets R; to the value at address R;.

Thus: loadre R; a;load R; R;: sets R; to x where p x = (L, a).

In general: Load variable x into register R;:

_ loada R; a if px = (G,a)
codep x p= ¢ loadrR; a if px=(L,a)
- move R; R; if px = (R, i)

73/103

73/103

Macro-Command for Accessing Local Variables
Define: the command load R; R; sets R; to the value at address R;.

Thus: loadrc R; a;load R; R;: sets R; to x where px = (L, a).

In general: Load variable x into register R;:

. loada R; a if px={(G,a)
codep, x p= ¢ loadrR; a if pax = {(L,a)
move R; R; if px = {(R,i)

Analogously: for write operations we define:

Urady = Mt
Loade. = Jomde

storera R, =

——

loadrec R; a
store R; R;
loadc R::
store R; R;

storeaa R; =

i.e. storea a R; is @ macro. Define special case (where p x = (G, a)):

=
codepx=e,p = codegexp
o i
« code[™ x p

store R R;

73/103

Data Transfer Instructions of the R-CMa
read- and write accesses of the R-CMa are as follows:

instruction semantics intuition

load R; R; R; + S[R/] load value from address
Toada'R; ¢ R « S[c load global variable
loadr R; ¢ Ri + SHP +¢| load local variable

store R; R; S[R)] + R; store value at address
storea ¢ R; Sle] « R; write global variable
storer ¢ K; S[FP + ¢] + R; write local variable

instructions for computing addresses:

instruction semantics intuition
logde R; ¢ Ri+g load constant
loadre R; ¢ R; + FP + ¢ load constant relative to FP

instructions for general data transfer:

instruction semantics intuition
move R; R; R + R, transfer value between regs

k—1

S[SP +i+ 1]« SR, +i]]._,
Ri+—SP+1;:8P— SP+k

move R; k R;
copy k values onto stack

74/103

Macro-Command for Accessing Local Variables
Define: the command load R; R; sets R; to the value at address R,.

Thus: loadre R; a;load R; R;: sets R; to x where p x = (L, a).

In general: Load variable x into register R;:

. loada R; a if px=1{(G.a)
codep, x p= ¢ loadrR; a if px={(L,a)
move R; R; if px=(R,i)

Analogously: for write operations we define:

storera R; = loadrc R; a
store R; R;
storecaa R; = loadc R; a
store R; R;

i.e. storea a R; is a macro. Define special case (where p x = (G, a}):

codepx=e,p = code;exp
loadc R, a
store R, | R;

73/103

Determining the Address-Environment

variables in the symbol table are tagged in one of three ways:
@ olobal variables, defined outside of functions (or as Static);éél?'p
© local (automatic) variables, defined inside functions, accessible

by pointers;
@ register (automatic) variables, defined inside functions. Cﬂ' S-}
Example: =
int x, vy;
void f(int v, int w) { p(v)
int a; x| (€ ,4)
if (a>0) { v | (6 4)
int b; v (a ,,.{)
g (&b) 7 w | (K ,-2)
} else ({ a (L)
int c¢; b (&,Q)
b c| (e .2)

75/103

Determining the Address-Environment

variables in the symbol table are tagged in one of three w
@ global variables, defined outside of functions (or ag statig);

@ local (automatic}:) variables, defined inside functions;acBasdible
by pointers; A L "
@ register (automatic) variables, defined inside functions.
Example:
int x, vy;
void f(int v, int w) { v p(v)
int a; x| (G,0)
if (a>0) | v | (G,1)
int bj; v | (R,-1)
g(&b) ; w| (R,-2)
} else { al (R,1)
int c; T o (L,0)
} c| (R,2)
}
Chapter 2:
—— ——— —

Arrays and Pointers

—

it flaf

77/103

Function Arguments on the Stack
@ C allows for so-called variadic functions
@ an unknown number of parameters: R_|,R_»,. ..
@ problem: callee cannot index into global registers

example:
int printf (const char * format, ...);
_ Er———

char s = ‘ , [value [olp)]

"Hello %s!\nIt’s_%i_to_%1i!\n"; R T
s ,—

int main (void) ! "World” | (L *i)
printf&i , "World", 5, 12); 5 (L’i)
return 0; 12 {L, —5)

}

idea:

@ push variadic parameters from right fo left onto the stack
@ the first parameter lies right below PC, FP, EP

@ for aprototype 7 f(r xy,..., 7k X¢, ...)Weset:
X — (R, —].) Xy — (RJ —k)
Xpa at <L, —3) Xpai at (L, -3 - |Tk+|‘ — . |Tk+;_]|>

76/103

Translation of Array Accesses
Extend code; and coder with indexed array accesses.

— ———

Lett [c] a; be the declaration of an array a.

79/103

Translation of Array Accesses
Extend code, and codey with indexed array accesses.

Lett [c] a; be the declaration of an array a.
In order to compute the address of a[i], we need to compute
pa+ |t = (R-Wert von i). Thus:

—

COC@EQ[E]] p = codel e p
- Codei';rl—eg P

loadc R: |t

mul Rig Rom Rio
add R; R; Riv

— ge——

79/103

C structs (Records)

Note:
The same field name may occur in different st ructs
Here: The component environment py, relates to the currently
translated structure sz. -
Let struct { int a; int b; } Ei be part of a declaration list.
@ x is a variable of the size of (at least) the sum of the sizes of its
fields
@ we populate p,, with addresses of fields that are relative to the
beginning of =, here a +— 0, b+ 1.

80/103

Translation of Array Accesses
Extend code, and codeg with indexed array accesses.

Lett [c] a; be the declaration of an array a.
In order to compute the address of a[i], we need to compute
pa—+ |t = (R-Wert von i). Thus:

codel erer] p = codel, ey p
codei{r] ey p
loadc R;.» |1
mul R;_l R;'_l Rf_g
add R,‘ R,‘ R,'_l
Note:
@ An array in C is simply a pointer. The declared array a is a
pointer constant, whose r-value is address of the first field o[‘%.
@ Formally, we compute the r-value of a field e as
codey e p = code] ap
@ in C the following are equivalent (as |-value, not as types):
2[a] al2] a+2

79/103

C structs (Records)

Note:
The same field name may occur in different structs
Here: The component environment p, relates to the currently
translated structure st.
Let struet { int a; int b; } x; be part of a declaration list.
@ x is a variable of the size of (at least) the sum of the sizes of its
fields
@ we populate p, with addresses of fields that are relative to the
beginning of %, here a — 0, b — 1.
In general, lett =struct {Hvi;...; & Vi }, then

k
t = 4 =0
f= 1l pavi=0

Pst Vi = pavior + | firi > 1
i—1 -~ - p— —
We obtain: e = _
codep (e.c) p = codep e p

loade R; 1 (py)

add &R: R;,l

80/103

Pointerin C

Computing with pointers means

@ to create pointers, that is, to obtain the address of a variable;

© to dereference pointers, that is, to access the pointed-to memory
dereteren

Creating pointers:

K

@ through the use of the address-of operatorziyields a pointer to
a variable, that is, its (=l-value). Thus define:

codey &e p

—

Example:

Let struet { int a; int b;
pe = {a—0,b— 1}.

Then

COdQ{f‘b) i
Coby Lk

Translation of Dereferencing () —
Letp={i— 1,j— 2,pt = 3,a — 0,b — 7} -

int i, 7;

n struct t { int a[7];
struct t *pt;

Translate e = ((pt —> b) —-> a) [1+1] b ||

struct t *b; }; .

= code ep

} ox; with p = {x— 13} and

——

loadc R; . 13
loadc R; 1
add R; Rf R;_l

81/103

Then we have:
codel ep = |
codef™ (i+1) p

loadc R, 5 1

mul R Rixy Riz»

add R,‘ R,‘ R,'_l

code! ((pt —b) — a)p =

code! ((pt — b) —a) p
loada R, 1

loade R; > 1

add Riiy Riy1 Rio
loadec Ri2» 1

mul Ry Riv1 Riso

add R,‘ R,‘ R,'_l

83/103

Dereferencing Pointers

Applying the_x operator to an expression e yields the content of the
cell whose I-value is stored in e:

codep *e p = codeg e p
iy -

load R,‘ R,‘

— -

Example: Consider

int i,9;

p struct t { int a[7]; struct t =b; };
struct t «pt;

and the expressione =((pt -> b) —> a) [i+1]

Since e->a = (*e) .a we get:

S
codel (e wa)p = codel ep
loadc R+ (&a)

add R; R; R;;j

82/103

Translation of Dereferencing (ll)

For dereferences of the form (xe) . a the r-value is equal to the
dereferencing of the |-value of e plus the offset of a. Thus, we define:

e—

code! ((pt = b) —a)p = codel (pt—b)p = loadaR; 3
loadc R;; O loadc R 7
add R,‘ R‘? R;J’F" add R,‘ R,‘ R;'_l
e load Ri R,‘
loadc R, 0
add R,‘ R,‘ R,'_l
Overall, we obtain the sequence:
‘ &
loada R; 3 load R; R; loada R, 1 loadc R 1
loadc R,'_ 1"7— loadc R,'_llﬁ-_— loadc R,'_g 1 mul R;_l R;_l R,'_g
add R,‘ R,‘ R,'_l add R,‘ R,‘ R,:r add R,‘_l R,‘_l R,‘_g add R,‘ R,‘ R,'_l

84/103

Passing Compound Parameters

Consider the following declarations:

typedef struct { int x, vy; } point_t;
int distToOrigin(point_t);

~ How do we pass parameters that are not basis types?

86/103

Passing Compound Parameters

10<

typedef struct { int x, y; } point_t;
int distToOrigin(point_t);

~ ﬁo/ﬁ do we pass parameters that are not basis types?

@ idea: caller passes a pointer to the structure
@ problem: callee could modify the structure

Consider the following declarations:

86/103

Passing Compound Parameters

Consider the following declarations:

typedef struct { int x, y; } point_t;
. . o . i
int distToOrigin (point_t);

~+ How do we pass parameters that are not basis types?
@ idea: caller passes a pointer to the structure
bt

86/103

Passing Compound Parameters

Consider the following declarations:

typedetf struct { int x, y; } point_t;
gEF distToOrigin (point_t);

-}\» How do we pass parameters that are not basis types?
@ idea: caller passes a pointer to the structure
@ problem: callee could modify the structure
oN4
-
p's pmb,

@ solution: caller passes a pointer to a copy
5 AA Téwp')

86/103

Passing Compound Parameters

Consider the following declarations:

typedef struct { int x, vy; } point_t;
int distToOrigin(point_t);

~ How do we pass parameters that are not basis types?
@ idea: caller passes a pointer to the structure
@ problem: callee could modify the structure
@ solution: caller passes a pointer to a copy

i+1 e

codeg g p = code])

move R; k Ri.| e a structure of size &

Chapter 3:
The Heap

86/103

88/103

Passing Compound Parameters

Consider the following declarations:

typedef struct { int x, y; } point_t;
int distToOrigin (point_t);

~+ How do we pass parameters that are not basis types?
@ idea: caller passes a pointer to the structure
@ problem: callee could modify the strycture
@ solution: caller passes a pointer to a copy
codek e p = codelt!
move R; k R;.

ep
e a structure of size &

new instruction: move

The Heap

Pointer all the use dynamic data structure that are allocated on the
heap and whose life-time does not have to follow the LIFO-allocation
scheme of the stack.

~+ we need an arbitrary large memory area H, called the heap;

implementation: -
—’
S H
S R o e
SP EP NP

T T

NP = new pointer; points to the first unused heap cell
EP = extreme pointer; points to the cell that SP may maximally
point (changes during function call/return).

86/103

89/103

Invariant of Heap and Stack

@ the stack and the heap may not overlap

—_—

S0/103

Invariant of Heap and Stack

@ the stack and the heap may not overlap

@ an overlap may only happen when SP is incremented (stack
overflow) or

@ when NP is decremented (out of memory)

@ in contrast to a stack overflow, an out of memory error can be
communicated to the programmer
@ malloc returns NULL in this case which is defined as (voidx) 0

@ EP reduces the necessary check to a single check upon entering
a function

—

@ the check for each heag allocation remains necessary

90/103

Invariant of Heap and Stack

@ the stack and the heap may not overlap

@ an overlap may only happen when SP is incremented (stack
overflow) or -
@ when NP is decremented (out of memory)

@ in contrast to a stack overflow, an out of memory error can be
communicated to the programmer

@ malloc returns NULL in this case which is defined as (void=*) 0
il -

Reserving Memory on the Stack
The instruction enter q sets EP to the last stack cell that this function

will use.

EP ——

| |

enter q
——

EP =SP +g;
if (EP > NP)
error (“stack overflow”);

90/103

91/103

Dynamically Allocated Memory

In order to implement malloc, its use is directly translated into
instructions:

@ acallto malloc must return a pointer to a heap cell:

codel, malloc (¢) p = codel ep
- =
new R;
NP —=-—| NP N

AN
pl

lTl new Ri

if (NP - R[i] <= EP) R[i] =
NP = NP - R[i];

= Lg;

NULL; else {
=L

R[1]
}

Possible Implementations of free

@ Leave the problem of dangling pointers to the programmer. Use
a data structure to manage allocated and free memory. ~
malloc becomes expensive

© Do nothing:

code free(e) p =

-

codey; e p

~~ simple and efficient, but not for reactive programs

© Use an automatic, possibly “conservative” garbage collection,

that occasionally runs to reclaim memorythat ¢ertainly is not in

use anymore. Make this re-claimed memory available again to
malloc.

92/103

94/103

Freeing Memory

A region allocated with ma11oc may be deallocated using free.
Problems:

“A—

@ the freed memory could still be accessed, thereby accessing
memory that may have a new owner (dangling references).

@ interleaving malloc and free may not leave a larger enough
block to satisfy more requests (fragmentation):

=

{

t + | }

—~— Chapter 4-—

Transtating Functions and Programs with
Heap

93

41

95/103

103

Instructions for Starting a Program
A program P = Fy;... F, has to have one main function.

code! Pp = n enter (k + 3)
allocr— [
loadc Rl__Ein gfp
savelos-Rr-Ro
mark
call R, D§ K
M()
halt

_fi: code' Fiop & py,

_fa: code! F, p® py,

—_—

97/103

Translation of Functions

The translation of a function is modified as follows:

code! t, £(args){decls ss} p = enterq
alloc k

————
move R, R_,

move R, R_,
code ™! g5 pf
<L M;{ oran return
Vg ad 3
Randbedinungen:

98/103

Instructions for Starting a Program
A program P = Fy;...F, has to have one main function.

enter (k + 3)
alloc k

loadc R _main
saveloc R, Ry
mark ~ 7
call R,
restoreloc Ry Ry
halt

fi: codel F1 p& o1

code! Pp =

_fur code' F, p@ py,

assumptions:
@ k are the number of stack location set aside for global variables
@ saveloc R, R, has no effect (i.e. it backs up no register)
@ ; contains the address of all functions and global variable

Translation of Functions

The translation of a function is modified as follows:

code! t, £(args){decls ss} p = entergq

allock

move R, R_,

move R, R_,
code/T™+! g5 pf
return

Randbedinungen:

@ cnter ensures that enough stack space is available (g: number of
required stack cells) -

97/103

98/103

Translation of Functions

The translation of a function is modified as follows:

code! 1, £(args){decls ss} p = enter
alloc k
move R R_

move K., R,
code" 1 55 o
return

Randbedinungen:

@ enter ensures that enough stack space is available (¢: number of
required stack cells)

@ alloc reserves space on the stack for local variables (k < g)

98/103

Translation of Function Calls
The function call g(ey, .. .e,) is translated as folllows:
codep gley,...e,) p = codep gp

code;{r' ey p

code;;'" en p

move R_| R

mc;ve R_, Ry,
saveloc R R;_,
mark

call R;

restoreloc R R;_
pop £

move R; Ry
Difference to previous scheme:

@ we assume that g has n arguments, that is, it is not variadic
@ new instruction pop : removes stack cells which have been

allocated in_ump

99/103

Translation of Function Calls
The function call g(ey, .. .e,) is translated as folllows:
code; gler,...e,) p = codeggp

codeL e; p

codei™ e, p

move R_| R

mo.ve R_, R,
saveloc Ry R;_,
mark

call R;

restoreloc R; R
&k

move R; Ry

Peephole Optimization

The generated code contains many redundancies, such as:

move R; R
e—

pop O

move Rs Ry
mul R4 R4 R','

Peephole optimization matches certain patterns and replaces them
by simpler patterns

99/103

100/103

Realistic Register Machiens

The R-CMa is a virtual machine that makes it easy to generate code.

101/103

Realistic Register Machiens

The R-CMa is a virtual machine that makes it easy to generate code.
@ real processors have a fixed number of registers

@ the infinite set of virtual registers of the R-CMa must be mapped
onto a finite set of processor registers

@ idea: use a register R; that is currently not in use for the content
of ;

@ in case the program needs more register at one time than
available, we need to spill registers onto the stack

We thus require solutions to the following problems:

101/103

Realistic Register Machiens

The R-CMa is a virtual machine that makes it easy to generate code.
@ real processors have a fixed number of registers

101/103

Realistic Register Machiens

The R-CMa is a virtual machine that makes it easy to generate code.
@ real processors have a fixed number of registers

@ the infinite set of virtual registers of the R-CMa must be mapped
onto a finite set of processor registers

@ idea_use a register R, that is currently not in use for the content

of R.i' K H
@ in case the program needs more register at one time than
available, we need to spill registers onto the stack

We thus require sqlutions.to the following problems:
@ determine when a register is not live (in use)

@ map several virtual registers to the same processor register if
they are not live at the same time

these problems are addressed in the lecture on Program
Optimization.

101/103

Register Coloring for the fac-Function

int
if

el

Note: def-use liveness

fac (int x) {
(x<=0) then
return 1;

se
return xxfac(x-1);

-1 01 2 3 4

_fac: enter 5 I

move Ry R

move R> R

loadc R; 0 I
leq Rg Rg R} I
jumpz R, _A

loadc R> 1 I
move Ry R I

return

jump _B

Outlook

register allocation has several other uses:
@ remove unnecessary move instructions

-1 0 1

2
move K> R
move Ry R
loade Ry 1

sub R3 R3 R4
move R_| R;

1
loadc R3 _fac
mark I

saveloc R R»

move Ry Ry

mul Rg R2 R}

move Ky R» I
return

return

call R;
restoreloc Ry R, I I
1

102/103

103/103

Register Coloring for the fac-Function
Note: def-use liveness coloring

int fac(int x) {

if (x<=0) then A: e R R -1 0 1 2 3
t 1; . 2 I
91:: o move Ry R
return xxfac(x-1); l,;’?id;RI?}; I I
§ 0 o Ky
} move R_;| R I
~1 0 1 2 3 4 loadc R3 _ﬁ!(.‘ 1
_fac: enter5 I saveloc R R,
move R R ::1';?11‘1;{
move Ry R 3 T
loadc RU : (l) I restoreloc R| R, l
ekt Ly mk 1
jumpz R, _A 2 Ry Ry i
loadc R> 1 I move Ry K> I
move Ry R, I 5. re;um
retumnm _bl return
jump _B
Outlook

register allocation has several other uses:
@ remove unnecessary move instructions
@ decide which variable to spill onto the stack
@ -~ this might in turn require more registers

@ translation into single static assignment form simplifies analysis

@ optimal register allocation possible (but registers might need to
be permuted at the end of basic blocks)

~ lecture on Program Oplimization
schematically presented liveness-analysis can be improved:

@ xis only live after x < y + 1 if y was live

@ saveloc keeps registers unnecessarily alive ~ intermediate
o ,
representation

102/103

103/103

Outlook

register allocation has several other uses:
@ remove unnecessary move instructions
@ decide which variable to spill onto the stack
@ ~- this might in turn require more registers

@ translation into single static assignment form simplifies analysis

@ optimal register allocation possible (but registers might need to
be permuted at the end of basic blocks)

~- |lecture on Program Optimization
schematically presented liveness-analysis can be improved:

@ xis only live after x « y + 1 if y was live

@ saveloc keeps registers unnecessarily alive ~- intermediate
representation

@ are there opfimal rules for the liveness-analysis?

103/103

