Script generated by TTT

Title: Simon: Compilerbau (30.06.2014)
Date: Mon Jun 30 14:15:39 CEST 2014

Duration: 90:40 min

Pages: 58
Example for if-statement 3 4
p codes € pr okl e P
Let p = {x— 4,y — 7} and let s be the statement
if (x>y) /(i) +/ <= ,(_?
i x=x - y; S (i) */
} else |
y =y — X; S (i) */ .
} g
M Mo
. 7 ~
Then code’ s p yields:
e
() (i) (i)
move R; R4 move R; Ry > _é__ move R; R;
move~R_,-__1 R move R R, move R, Ry
gl‘R,' R,‘ R,'_l SUb.&RE R;_l SUbR,‘ R,‘ R;_l
jumpz R; A move Ry R; move R; R;

(jump B Vi

36/103

7648 TECHNISCHE UNIVERSITAT MUNCHEN m
g%gg FAKULTAT FUR INFORMATIK
[, T

e
Compiler Construction |

Dr. Michael Petter, Dr. Axel Simon

SoSe 2014

Iterating Statements

We only consider the loop s = while (e) s’. For this statement we
define:

code’ while(e)

s
— -

p =A: codegep eoiley, e
jumpz R; B

code’ s p | jumpz
jump A code for s’
B
jump e
[X N -
—J

1/103

37/103

Example: Translation of Loops

Let p = {a — 7,b — 8,c — 9} and let s be the statement:

z
M},C while (a>0) |{

/x (i) */
c=c+ 1; S (i) */
a =a - b; Sx (dil) */

b)
Then code’ s p evaluates to:
Ay anove L7 Ry
Mﬁ Roea O
ﬁ,: VQ,{ ﬁaf&q
9.0(/”7,% K,,i B

VIV KL Kj
WC_ /ac"’l 1
adl R W aeq
gt 23 K3

i

5

38/103

for-Loops

The for-loop s = for (e;;¢2;¢3) 5’ is equivalent to the statement
sequence e;; while () {s’ ¥;;} —as long as s’ does not contain a
continue statement.

Thus, we translate:

code’ for(erjexes)sp = codek e p

A: codeg e p
jumpz R; B
code’ s p
code}; e3 p

jump A

39/103

Example: Translation of Loops

Letp = {a — 7.b — 8,c — 9} and let s be the statement:

while (a>0) { /+ (i) +/
c=c+ 1; S (i) */
a =a - b; Sw o (dil) */

}

Then code’ s p evaluates to:

() (ii) (i)

A: move R; Ry move R; Ry move R; Ry
loadc R; . O loade R; . 1 move R, | Ry
grR; R; Rivy add R; R; Rj-, subR; R; Ri+;
jumpz R; B move Ry R; move R R;
jump A
B:
The switch-Statement
B
|dea: i
@ Suppose choosing from multiple options in constant time if ;
possible e
@ use a jump table that, at the ith position, holds a jump to the ith
alternative

@ in order to realize this idea, we need an indirect jump instruction

/)mlcé(?() J XECGI,&]

(o @2 .

; g bt >

3

J o

38/103

40/103

The switch-Statement

Idea:
@ Suppose choosing from multiple options in constant time if
possible
@ use a jump table that, at the ith position, holds a jump to the ith
alternative
@ in order to realize this idea, we need an indirect jump instruction

‘E jumpi Ri A EI

Ri Ri
PC PC
PC=A+R;

40/103

Consecutive Alternatives
Let switch g be given with k consecutive case alternatives:
switch (e) {
case ¢): §); break;

——

case ¢._|: S,—1; break;
default: s‘?\ break;
}
that iS, ci+ 1= Citl fori = [Oik — 1]
Define code’ s p as follows:

C()dei‘.v P = codey e p
check’ ¢y Cp—1 B B: Jump Ag
ﬁu : code’ o0 : :
jump D jump Ay
.) H
L C: codd s f
Ag_1: code' Sk_1 P

jump D

41/103

Consecutive Alternatives
Let switch s be given with k consecutive case alternatives:

switch (e) |
case ¢y: Sy; break;

case ¢;_|: S;—1; break;
default: s; break;
1
thatis, c; +1 = Citl fori = [O,k — 1}

A e p—

Consecutive Alternatives
Let switch s be given with k consecutive case alternatives:

switch (e) {
case (): §); break;

case ¢;_1: Si—1; break;
default: s; break;
}
that iS, ci+1= Cit1 fori= [O,k — 1}
Define code’ s p as follows:
code’ s p = codek e p

check' ¢y cr_1 B B: jump Ag
Ap: codel s D

jump D jump Ay

Ap_y: codel s,y P
_ jump D
check' I u B checks if { < R; < u holds and jumps accordingly.
—

41/103

41/103

Translation of the check’ Macro

The macro check’ 1 u Bchecks if i <R, <u. Letk=u — 1.
@ if I <R <uitjumpsto B+R; — I -

@ ifR; <lorR; > uitjumpsto C

B: jumpA -

jump Ay —

AR

Translation of the check’ Macro

The macro check! 1 u Bchecks ifl <R, < u. Letk =u—1.
@ ifl<R <uitjumpsto B+ R; —1
@ if R <lorR; > uitjumpsto C

we define:

loade R; . 1

geq Rio R Riyy
jumpz R; ;> E
sub R; R,‘ R;_l
loadec Riv k
geq R R Ry
jumpz R;.» D C:
E: loadc R; k

D: jumpiR; B

check'luB =
B: jump Ap

jump Ag

Note: a jump jumpi R; B with R, = k winds up at C.

42/103

42/103

Translation of the check’ Macro

The macro check’ 1 u B checks if I < R; < u. Letk=u — 1.
@ ifIl<R <uitjumpstoB+R; — 1 -
@ if R, < lor R > uitjumps to C

we define:

checkl luB =

2. elo~]

loadc Ri 1 [
geq R R Ry
jumpz R, 5 E
sub R,‘ R; R;,l
loadc R;,T
geq Rz R Riyy
. jumpz R D C:
VZ"?,/Z E: loadcR; k_

D: jumpﬁ?-; B

Beo

B: jump Ap

jur;lp Ap_y Ui- (-1
Bri

Improvements for Jump Tables

This translation is only suitable for certain switch-statement.
@ In case the table starts with 0 instead of £ we don’t need to
subtract it from e before we use it as index
@ if the value of e is guaranteed to be in the interval [/, 4], we can
omit check -
@ can we implement the switch-statement using an L-attributed
system without symbolic labels?

42

103

43/103

Improvements for Jump Tables

This translation is only suitable for certain switch-statement.

@ |n case the table starts with 0 instead of « we don’t need to
subtract it from e before we use it as index

@ if the value of ¢ is guaranteed to be in the interval [/, u], we can
omit check
@ can we implement the switch-statement using an L-attributed
system without symbolic labels?
e difficult since B is unknown when check' is translated
@ ~ use symbolic labels or basic blocks

43/103

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of if-statements

@ for n cases, an if-cascade (tree of conditionals) can be
generated ~+ O(log n) tests

—_ ;4*(05&
7N

A X

44/103

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of if-statements

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of if-statements

@ for n cases, an if-cascade (iree of conditionals) can be
generated ~ O(log n) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

44/103

44/103

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of if-statements

@ for n cases, an if-cascade (tree of conditionals) can be
generated ~+ O(log n) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

@ one could generate several jump tables, one for each sets of
consecutive cases

44103

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
Idea:

@ translation of a function: create an empty block and store a
pointer to it in the node of the function declaration

45/103

General translation of switch-Statements

In general, the values of the various cases may be far apart:
@ generate an if-ladder, that is, a sequence of if-statements
@ for n cases, an i£-cascade (tree of conditionals) can be
generated ~ O(log n) tests

@ if the sequence of numbers has small gaps (< 3), a jump table
may be smaller and faster

@ one could generate several jump tables, one for each sets of
consecutive cases

@ an if cascade can be re-arranged by using information from
profiling, so that paths executed more frequently require fewer
tests

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
Idea:

@ translation of a function: create an empty block and store a
pointer to it in the node of the function declaration

@ pass this block down to the translation of statements

44/103

45/103

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
Idea:

@ translation of a function: create an empty block and store a
pointer to it in the node of the function declaration

@ pass this block down to the translation of statements
@ cach new statement is appended to this basic block

Chapter 5:
Functions

45/103

46/103

Translation into Basic Blocks

Problem: How do we connect the different basic blocks?
ldea:

@ translation of a function: create an empty block and store a
pointer to it in the node of the function declaration

@ pass this block down to the translation of statements

@ each new statement is appended to this basic block

@ atwo-way if-statement creates three new blocks:

@ one for the then-branch, connected with the current block by a
jumpz-edge

© one for the else-branch, connected with the current block by a
jump-edge

© one for the following statements, connect to the then- and
else-branch by a jump edge

@ similar for other constructs

Ingredients of a Function

The definition of a function consists of
@ a name with which it can be called;
@ a Mication of its formal parameters;
@ possibly a result type;

@ a seguence of statements.

o

In C we have:

. L
codel f p = loadc _f with _f starting address of f

Observe:
@ function names must have an address assigned to them

@ since the size of functions is unknown before they are translated,
the addresses of forward-declared functions must be inserted
later

45/103

47/103

Memory Management in Functions

int main (void) {
int n;
n = fac(2) + fac(l);
printf ("$d", n);
1

int fac(int x) {
if (x<=0) return 1;
else return x*fac(x-1);
=

}

At run-time several instance may be active, that is, the function has
been called but has not yet returned.
The recursion tree in the example:

e e e
main Worken

fzi\c fac printf ;"‘c !
fzic f:&c
fac

48/103

Memory Management in Function Variables

The formal parameters and the local variables of the various
(instances) of a function must be kept separate

Idea for implementing functions:

@ set up a region of memory each time it is called

49/103

Memory Management in Function Variables

The formal parameters and the local variables of the various
(instances) of a function must be kept separate

|dea for implementing functions:

49/103

Memory Management in Function Variables

The formal parameters and the local variables of the various
(instances) of a function must be kept separate

|dea for implementing functions:

@ set up a region of memory each time it is called

@ in sequential programs this memory region can be allocate on
the stack

49/103

Memory Management in Function Variables

-Lhe formal parameters and the local variables of the various
(instances) of a function must e kept separate

Idea for implementing funktions:

— @ set up,a~r§3ion of memory egch time it is called
@ in sequenfial programs this memory region can be allocate on

the stack—+

@ thus, each instance of a function has its own region on the stack
@ these regions are called stack frames)

49/103

Organization of a Stack Frame

@ stack representation: grows upwards
@ SP points to the last used stack cell

SP —»
local memory
callee
FP ——— PCold
organizational
FPold cells
EPold
local memory
caller

o FP.=tramepoirter: points to the last organizational cell
@ use torecover the previously active stack frame
@ EP has to do with the heap, will come to that later

50/103

Organization of a Stack Frame

@ stack representation: grows upwards
@ SP points to the last used stack cell

SPp ——»
local memory
callee
FP ———{ PCold
organizational
FPold cells
EPold
local memory
caller

@ FP = frame pointer: points to the last organizational cell
@ use to recover the previously active stack frame

50/103

Principle of Function Call and Return
actions taken on entering g:

actions taken on leaving g:

1.

compute the result

1. compute the start address of g
2. compute actual parameters
3. backup of caller-save registers } saveloc
4. backup of FP, EP “mark are in f
5. setthe new FP
6. back up of PC and call
jump to the beginning of ¢
7. enter .
8. { alloc } aretnsg

2. restore FP, EP, SP .
3. return to the call site in f, return arein g
thatis, restore PC~ ~ -
__ 4. restore the caller-save registers {restoreloc} are in f
5. EOE g :

52/103

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live inicz:_gl registers R, <>
@ intermediate results also live in local registers R;
@ parameters global registers R; (with i < 0)
@ global variables: -

53/103

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R;
@ parameters global registers R; (with i < 0)
@ global variables: let's suppose there are none
convention:
@ the ith argument of a function is passed in register Ry

53/103

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R,
@ intermediate results also live in local registers R;
@ parameters global registers R; (with i < 0)
@ global variables: let's suppose there are none
convention:

53/103

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R;
@ parameters global registers R, (with i < 0)
@ global variables: let's suppose there are none
convention:
@ the ith argument of a function is passed in register &,
@ the result of a function is stored in R,
@ local registers are saved before calling a function

53/103

Managing Registers during Function Calls

The two register sets (global and local) are used as follows:
@ automatic variables live in local registers R;
@ intermediate results also live in local registers R;
@ parameters global registers R; (with i < 0)
@ global variables: let's suppose there are none
convention:
@ the ith argument of a function is passed in register R;
@ the result of a function is stored in R,
@ |ocal registers are saved before calling a function

Definition
Letf be a function that calls 8 Aregister R; is called
@ caller-saved if i backs up R; and ¢ may overwrite it

® callee-saved |f f R does not back up ¢ must restore it before it
returns

53/103

Translation of Function Calls
A function call g(ey, . ..e,) is translated as follows:

code{z gp

code“rl ey p

codel, gler,...e,) p =

i+n

code ey p

move R_| R

mc;ve R_, Ri.,
saveloc R, R,_,
mark

call R;

restoreloc Ry R;_

move R; Ry
New instructions:
@ saveloc R; R; pushes the registers R;, R, 1 ..
@ mark backs up the organizational cells
@ call R; calls the function at the address in R,
@ restoreloc R; R; pops Ii,_ R;_1,...R; off the stack

.& onto the stack

54/103

Translation of Function Calls

A function call g(e;, .

cod@g{el en)

Y

.. ¢,) is translated as follows:

Code;z_c;[_p

code;;rl e p

code™ e, p

move R_| R

—— T —

mc;ve R,H R,
eaveloc R R; |
mark

call R;

restoreloc R R;_

move R; Ry
—

Translation of Function Calls

A function call g(ey, ..

codel, gler,...e,) p

New instructions:

@ saveloc R; R; pushes the registers Ri, Ry 1 ..

.e,) is translated as follows:

?

(:odei2 gp =

c:ode“rl el p

code**” en

move R_; R

méve R_, Riin
saveloc R| R;_,
mark

call R;

restoreloc R R;_

move R; Ry

@ mark backs up the organizational cells
@ call R; calls the function at the address in R;

@ restoreloc R; R; pops R;, R;_1,. .. R; off the stack

- =7

W@(zy

54/103

codef;@f

move R_| R;

co&lek P
move R, R;
codef{ gp
saveldec Ry Ri—
mar

call R;

restoreloc Ry Ri—)

move R; Ry

.R; onto the stack

54/103

P

cates stack space for the return value and

Rescuing EP

~—7 FP 4 FP]
—SEP [e [__ L\ EP [e] |~ [e
_b’ A mark
C
_GL
ek
S[SP+1] = EP; (M & | ¢
+1]=) [
S[SP+2] = FP; tant al 2w
SP=SP +2; oot 14

55/103

Result of a Function

The global register set is also used to communicate the result value
of a function:

code' returnep = codeep
—
move Ry R;

return

———

57/103

Calling a Function

The instruction call rescues the value of PC+1 onto the stack and
sets FP and PC.

SP = SP+1;
S[SP] = PC;
EP = SP;

£o-Ri

Result of a Function

The global register set is also used to communicate the result value
of a function:

code' returnep = codeyep
move Ry R;

return
alternative without result value:

code! returnp = retum

56

103

57/103

Return from a Function

The instruction return relinquishes control of the current stack frame,
that is, it restores PC, EP and FP.

PC PC [p

FP P FP

EP return EP e
e

Y

BC = S[FP]; EP = S[FP-2];
SP = FP-3; FP = S[SP+2];

58/103

Translation of Functions

The translation of a function is thus defined as follows:

code! t, f(args){decls ss} p = entergq
move K. R_

move R, R_,
code! Tt g5 pf
return

Assumptions:
@ the function has »n parameters

59/103

Translation of Functions

The translation of a function is thus defined as follows:
C d@t,. f s){decls ss = t
co {aLgs){ ecls ss} p enter g

move R, R_,

—

move Rifn &n
code™ 1 55 pf

i
return

Assumptions:

59/103

Translation of Functions

The translation of a function is thus defined as follows:

code! t, f(args){decls ss} p = enterq
- move K. R_,

move R, R_
code!Tn+! s@

return

Assumptions:
@ the function has n parameters
@ the local variables are stored in registers Ry, ... R,
@ the parameters of the functionareinr_,,...R_,

——

59/103

Translation of Functions Translation of Functions

The translation of a function is thus defined as follows: The translation of a function is thus defined as follows:
code! 1, £(args){decls ss} p = entergq code! 1, £(args){decls ss} p = enter g
move R R_, move R, R_,
move K., R_, move R, R_,
code "1 g5 pf code™ 1 55 pf
return return
o
Assumptions: Assumptions:
@ the function has n parameters @ the function has n parameters
@ the local variables are stored in registers Ry, .. . R, @ the local variables are stored in registers Ry, ... R,
@ the parameters of the functionare inR_,,...R_, @ the parameters of the functionareinkR_,,...R_,
@ /' is obtained by extending » with the bindings in decls and the @ /' is obtained by extending p with the bindings in decls and the
function parameters args function parameters args

@ return is not always necessary

59/103 59/103

Result of a Function Translation of Functions

The global register set is also used to communicate the result value The translation of a function is thus defined as follows:
of a function: code! t, f(args){decls ss} p = enterq

move R, R_

code' returnep = codeep
move Ry R; : /
move R, R_,
return code+1 g5 pf 0[

. . return
alternative without result value:

Assumptions:
@ the function has n parameters
@ the local variables are stored in registers Ry, ... R,

code! return p = retumn

global registers are otherwise not used inside a function body:
@ advantage: at any point in the body another function can be
called without backing up global registers
@ disadvantage: on entering a function, all global registers must be
saved

57/103 59/103

Translation of Whole Programs

A program P = Fy;... F, must have a single main function.
- —— —

codej Pp =

_fi:

——

s

loadc R| _main
mark T
call R,
halt™
code! Fy p & py,

code! F, p @ py,

——

60/103

Translation of the fac-function

Consider:
int fac(int x) { _A:
if (x<=0) then i=
return 1; =
else
return §;fac(xfl); ai?
P{ '« > 17
_fac: enter5 3 mark+call
move R; R_; save param.
i=2 moveR; R, if (x<=0)
loadc R3 0
leq Rg Rg R3
jumpz R _A toelse
—= loadc R, 1 return 1
MOVEﬁRg _B:
return
jump_B code is dead

move K> R x*xfac (x—1)
move K3y R x=1

loadec Ry 1

sub R3 R3 R4

move R_; R,
loadc > R3 _f_(_m
saveloc R, R»
_mark

call R;
restoreloc Ry R,
move Ry Ry
mul R?.Rg R3
move Ry R»
return

return

fac(x-1)

61/103

return xx...

Translation of Whole Programs

A program P = Fy;. .. F, must have a single main function.

code! Pp = loadc R, main
- mark
call R,
halt

_f] : code' Fl P & s
. — Sy

_fu: code! Fy p @ py,
S
Assumptions:

® p = () assuming that we have no global variables

@ /; contain the addresses the local variables
(x)

_ 2
@ 1 &= Ax. { ,01(3()

if v € dom(p2)
otherwise

60/103

