Script generated by TTT

Title: Simon: Compilerbau (23.06.2014)
Date: Mon Jun 23 14:15:15 CEST 2014
Duration: 90:10 min

Pages: 68

Generating Code: Overview

Kx =

We inductively generate instructions from the AST:

@ there is a rule stating how to generate code for each
non-terminal of the grammar

@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

3/103

Topic:

Code Synthesis

2/103

Generating Code: Overview

We inductively generate instructions from the AST:

@ there is a rule stating how to generate code for each
non-terminal of the grammar

@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

In order to specify the code generation, we require
@ a semantics of the language we are compiling (here: C standard)
@ the semantic of the machine instructions

3/103

Generating Code: Overview

We inductively generate instructions from the AST:

@ there is a rule stating how to generate code for each
non-terminal of the grammar

@ the code is merely another attribute in the syntax tree
@ code generation makes use of the already computed attributes

In order to specify the code generation, we require
@ a semantics of the language we are compiling (here: C standard)
@ the semantic of the machine instructions

~» we commence by specifying machine instruction semantics

3/103

Virtual Machines

A virtual machines has the following ingredients:
@ any virtual machine provides a set of instructions
@ instructions are executed on virtual hardware

@ the virtual hardware is a collection of data structures that is
accessed and modified by the VM instructions

@ ... and also by other components of the_run-time system, namely
functions that go beyond the instruction semantics

@ the interpreter is part of the run-time system

6/103

The Register C-Machine (RCMa)

We generate Code for the Register C-Machine.

The Register C-Machine is a virtual machine (VM).
@ there exists no processor that can execute its instructions
@ ... but we can build an interpreter for it
@ we provide a visualization environment for the R-CMa
@ the R-CMa has no double, float, char, short or long types
@ the R-CMa has no instructions to communicate with the

operating system

@ the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:
@ the mentioned restrictions can easily be lifted
@ the i chine (JVM) is similar to the R-CMa but has
—— e

no registers

@ an interpreter of B- n run on any platform

5/103

Components of a Virtual Machine
Consider Java as an example:

S L] [| |

0 1 D_I.J.g
s O [M7y

0 T D;’-P

A virtual machine such as the JVM has the following structure:
@ S:the data store —a memory region in which cells can be stored
in LIFQ order ~- stack.
@ SP: (= stack pointer) pointer to the last used cell in S
@ beyond S, the memory containing the heap follows

7/103

Components of a Virtual Machine
Consider Java as an example:

DPC

0 T

[| sp
A virtual machine such as the JVM has the following structure:
@ S:the data store — a memory region in which cells can be stored
in LIFO order ~- stack.
@ SP: (= stack pointer) pointer to the last used cell in S
@ beyond S, the memory containing the heap follows
@ C is the memory storing code
@ each cell of C holds exactly one virtual instruction
e _C can only be read
e_BL (= program counter) address of the instruction that is to be
executed next
@ PC contains 0 initially

7/103

Chapter 2:
Evaluation of Expressions

9/103

Executing a Program

@ the machine loads an instruction form C[PC| into an instruction
register_I_Fj in order to execute it

@ before evaluating the instruction, the PC is incremented by one

while (true) {
IR = C[PC]; BC++;
execute (IR);

@ node: the PC must be incremented before the execution, since
an instruction may modify the EC

@ the loop is exited by evaluating a halt instruction that returns
. . e
directly to the operating system

Simple Expressions and Assignments

Task: evaluate the expression (1 +7) 3
that is, generate an instruction sequence that

@ computes the value of the expression and
@ stores it on top of the stack

8

103

10/103

Simple Expressions and Assignments

Task: evaluate the expression @\@
that is, generate an instruction sequence that

@ computes the value of the expression and
@ stores it on top of the stack

Idea:
@ first compute the value of the sub-expressions
@ store the intermediate result on top of the stack

@ apply the operator

10/103

Binary Operators

Operators with two arguments run as follows:

_—) 3 forer
- |8 =
imul I
SP--;

SISP] = SISP] + S[SP+1];

i J

12/103

General Principle

Evaluating an operation op(ay,. . .a,)
@ the arguments ay,. .. a, must be on top of the stack
@ the execution of the operation op consumes its arguments
@ any resulting values are storea—an top of the stack

D iconst q d
SP++;
sisPl-a; 7 € Z

the instruction iconst g puts the int-constant g onto the stack

Binary Operators

Operators with two arguments run as follows:

8 24

I imul

SP--;
S[SP] = S[SP] « S[SP+1];

@ imul expects two arguments on top of the stack, consumes them
and puts the result on top of the stack

11/103

12/103

Composition of Instructions

Example: generate code for 1 + 7:

iconst 7 iadd

—_— ——

iconst 1

Execution of this instruction sequence:

iconst 1

= O

iconst 7

13/103

Expressions with Variables
Variables occupy a memory cell in S:

@ Associating addresses with variables can be done while creating
the sym . The address is stored in any case at the node
of the declaration of a variable.

_-—7-

14/103

Expressions with Variables
Variables occupy a memory cell in S:

J0 4
A, 9,2

#e N
[[]
_TN
=

14/103

Expressions with Variables
Variables occupy a memory cell in S:

@ Associating addresses with variables can be done while creating
the symbol table. The address is stored in any case at the node
of the declaration of a variable.

@ For each use of a variable, the address has to be looked up by
inspecting its declaration node.

14/103

Expressions with Variables
Variables occupy a memory cell in S:

@ Associating addresses with variables can be done while creating
the symbol table. The address is stored in any case at the node
of the declaration of a variable.

@ For each use of a variable, the address has to be looked up by
inspecting its declaration node.

@ in the sequel, we use a mathematical map p, that contains
mappings form a variable x to the gglative) address of x; the map

p is called address envi r simply environment).

14/103

Reading from a Variable

The instruction iload & loads the value at address k, where k is relative
to the top of the stack

13
J iload k =

S[SP+1] = S[SP-K]; SP = SP+1;

Example: Compute x + 2 where p = {x— 1}: z
iload 1 41
iconst 2

[
iadd <\ 2 |

15/103

Reading from a Variable

The instruction iload k loads the value at address k, where k is relative
to the top of the stack -

— J iload k]
13

S[SP+1] = S[SP-k]; SP = SP+1:

Example: Compute x + 2 where p = {x— 1}:

15/103

Chapter 3:
Generating Code for the Register C-Machine

16/103

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal
registers.

17/103

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal
registers.

@ arithmetic operations can only use these registers as arguments

@ access to memory are done via instructions to load and store to
and from registers

@ unlike the stack, registers have to be explicitly saved before a
function is called

A translation for a RISC processor must therefore:

e e

17/103

Motivation for the Register C-Machine
Mc e oo0 Cise

A modern RISC processor features a fixed number of universal
registers.
@ arithmetic operations can only use these registers as arguments

@ access to memory are done via instructions to load and store to

and from registers

@ unlike the stack, registers have to be explicitly saved before a
function is called

17/103

Motivation for the Register C-Machine

A modern RISC processor features a fixed number of universal
registers.

@ arithmetic operations can only use these registers as arguments

@ access to memory are done via instructions to load and store to
and from registers

@ unlike the stack, registers have to be explicitly saved before a
function is called

A translation for a RISC processor must therefore:
@ store variables and function arguments in registers

© save the content of registers onto the stack before calling a
function

© express any arbitrary computation using finitely many registers
~~ only consider the first two problems (and deal with the other’@

later) _

17/103

Principle of the Register C-Machine

The R-CMa is composed of a stack, heap and a code segment, just
like the JVM; it additionally has register sets:

@ /ocalregisters are R|,R>, .. . R;,. ..

D S
@ global registerare Ry,R_,,... R;, ...
— - — _—_—

LA B R

Rl R()
ol O
Ry R 4

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the /ocal registers R;

@ save temporary results

@ store the contents of local variables of a function

@ can efficiently be stored and restored from the stack
@ the global registers R,

@ save the parameters of a function
@ store the result of a function

18/103

19/103

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the local registers R;

o save temporary results
@ store the contents of local variables of a function
o can efficiently be stored and restored from the stack

———

19/103

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the local registers R;

@ save temporary results
@ store the contents of local variables of a function
@ can efficiently be stored and restored from the stack

© the global registers R,

@ save the parameters of a function
@ store the result of a function

Note:
for now, we only use registers to store temporary computations

19/103

The Register Sets of the R-CMa

The two register sets have the following purpose:

@ the local registers R;

@ save temporary results
@ store the contents of local variables of a function
e can efficiently be stored and restored from the stack

© the global registers &,

@ save the parameters of a function
o store the result of a function

Note:
for now, we only use registers to store temporary computations

|dea for the translation: use a register counter i:
@ registers R; with j < i are in use
@ registers R; with j > i are available

19/103

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition
loadc R; ¢ Ri=c load constant
move R,‘ Rf‘ RJ‘ = Rj' COpy R‘,' to R,‘

We define the following translation schema (with p x = a):
——

COdQ’C p =

loadc R; ¢
cod%)i po= movPT R; R, _ ~ ,:].
codekx=ep = codeyep X‘y” ;
move R, R; \on'a'd

- +
Ovvé:;'e P ;,/Cx=q’) {
)

20/103

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition
loadc R; ¢ R =c load constant
move R; R; Ri=R; copy R; to R;

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition
loade R; ¢ Ri=c load constant
move R; R‘,' R; = R}' COpy R}‘ to RJ‘

We define the following translation schema (with p x = a):

codep cp = loadc R; ¢
codeyp x p = move R; R,

codeg x=ep = codegep
move R, R;

Note: all instructions use the Intel convention (in contrast to the
AT&T convention): op dgf srei ... S7ca.

20

103

20/103

Translation of Expressions

Letop = {add, sub. div, mul, mod, le, gr, eq, leq, geq, and, or}. The
R-CMa provides an instruction for each operator op.

op R R; R
e amp-
where R; is the target register, R; the first and R, the second
argument. - =

Correspondingly, we gener?_te code as follows: 24
cod@el opexp = codehep nul-
- codeft! e; p

0p R; R; Ry

— T g

21/103

Translation of Expressions

Let op = {add, sub, div, mul, mod, le, gr, eq, leq. geq, and, or}. The
R-CMa provides an instruction for each operator op.

op R; Rj Ry

where R; is the target register, R; the first and R, the second
argument.

Correspondingly, we generate code as follows:

codef2 ejopep = (:odef1 e p
code;{H er
op R; R; Ri

Example: Translate 3«4 with i = 4:
, code} 3*4 p_ = loadcRy3
A / 4 loade Rs 4
Oq?’kn }(=z g 'Y = ke lT.l‘Ul R4 R4 Rs
oV & A

):;C‘»O“S_

21/103

Translation of Expressions

Let op = {add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or}. The
R-CMa provides an instruction for each operator op.

op R; Rj R

where R, is the target register, R; the first and R, the second
argument.

Correspondingly, we generate code as follows:

codey €1 p
code™ ey p

op R; R; R

codep eyoperp =

Example: Translate 3«4 with { = 4:
i -

conB*élJ_)‘ = c03 P

coded) 4 el
mulR4R4R5
i

Loadc 43
MC gff({

21/103

Translation of Expressions m: x=y=7) p*

Let op = {add, sub, div, mul, mod, le, gr, eq, leg, geq. ‘-””MZ’ '%h,eq.ja
R-CMa provides an instruction for each operator op.

- [W‘Q -
op R,‘ Rj Rk R H - -F
| | | Lomde B F
where R; is the target register, R; the first and R, the second
argument. & :;)
Correspondingly, we generate code as follows: K= e
Aﬂ‘\ s codefa eqoperp = codef{ el ,{Pb =l
code;;rl er p
opR; R; Ri Z
e o e Col 4 @ P
xampld: Translate 3«4 with i = 4: ‘ ,
codef 3«4 p = code} 3 p
codej 4 p
mul R4 R4 R5
o

21/103

Translation of Expressions

Let op = {add,~wbd@iv, mul, mod, le, gr, eq, leq, geq, amd; orf—The
R-CMa provides an instruction for each operator op.

A
2, \% Ri R; Ry

where R; is the target register, R, the first and =, the second

argument.

O

Correspondingly, we generate code as follows:

codel, e;operp =

o

codel, e p

code“rl erp

oop KK fo
Loade s

pun Mq 'el-f 'eﬁ"'

&w(c QqS

el
atd py, eq ke ..

Semantics of Operators

The operators have the following semantics:

add R,‘ Rj Rk
sub R{' Rj Rk
div R; Rj Rk
mul R; Rj. Rk
mod R;‘ Rj Rk

le R; Rj R,(—
gr R;‘ Rj R,{-
eq Ri R; R,
leq Ri R,‘ Rk
geq Ri R; Ry
and R,‘ Rj RJ{-
ot Ri R; Ry

R =R +R,

R =R — R,

R = R/R, (o ¢4) } (cca)
R; = RJ*R‘(

R = Sgi’!fR,()k wobei

= |f1€"< R; then 1 1 elseﬁ -

= |fR > R, then 1 else 0

= |fR = R, then 1 else 0

= IfR < R, then 1else 0

_|fR > R, then 1 else 0 &2'
— R, & R. // bit-wise and <
=R TR /I bit-wise or

%%%wa%

23/103

Managing Temporary Registers
Observe that temporary registers are re-used: translate 3x4+3x4

witht = 4

4
codef;

where

codel, 3x4 p =

we obtain

codef 3%4+3x4 p =

3x44+3%4 p =

code} 3+4 p
codey 3+4 p
add R4 R4 R5

loadc R; 3
loadec R;o1 4
mul R; Ri Rffl

loadc Ry 3
loadc Rs 4
mul R4 R4 R5
loadc Rs 3
loadc Rs 4
mul R5 R5 R(\J
add R4 R4 R5

Semantics of Operators

The operators have the following semantics:

add R,‘ Rj Rk
sub Ri R,‘ Rk
div R; Rf Rk
mul R; R; Rk
mod R,‘ Rj Rk

le R; Rj Rk
gar R,' Rj Rk
eq R,‘ Rf Rk
qu R{' Rj Rk
geq Ri R; Ry
and R,‘ Rf Rk
or R{‘ Rj Rk

Ri=R;+ Ry
R =R — R
R =R;/R,
Rf_R *R;‘

R; = sgn(R;)k wobei

‘Rj‘ = H‘Rd +hkAR>0,0<k< |RL|
=if R; < Ry then 1 else 0

if R; > R then 1 else 0

= |fR = R, then 1 else 0

= IfR < R, then 1 else 0

= |fR > Rithen 1 else 0

R, = Rj & Ry // bit-wise and

R; = Rj ‘ Ry // bit-wise or

R

Note: all registers and memory cells contain operands in Z

22/103

23/103

Translation of Unary Operators
/

Unary operators op = {neg. n'ar} take only two registers:

codel, opEy = codglg ep
op R; R;

24/103

Translation of Unary Operators

Unary operators op = {neg, not} take only two registers:

codeh opep = codelep
op R; R;‘
Note: We use the same register.
Example: Translate -4 into Rs:
codej -4 p = loadc Rs4
neg Rs Rs

24/103

Translation of Unary Operators

Unary operators op = {neg, not} take only two registers:

codel, opep = codel e p
op Ri R;
Note: We use the same register. -—_

Applying Translation Schema for Expressions

Suppose the following function

o void f (void) {
is given:

int x%,y,z;
% =
}
o Letp={x = Ly—2 2,z -—>_} be the address environment.
@ Let R, be the first free register, that is, 1— 4.

y+tz*3;

Codep\ x=y+z*3p = code} y+z*3p

move Ry R,

J)&qu

24/103

25/103

Applying Translation Schema for Expressions

Suppose the following function

L void f (void) {
IS given:

int x,vy,z;

x = y+zx3;
}
® Letp = {x~> 1,y = 2,z 3} be the address environment.
@ Let R, be the first free register, that is, i = 4.

code* x=y+zx3p = code} y+z+3p
move R Ry

cod%.‘ y+z+3p = moveR; R, = wﬂ(tcz g Tomewe

codey z*3 p
add R4 R4 R5

25/103

Applying Translation Schema for Expressions

Suppose the following function

L void f (void) ({
is given:

int x,vy,z;

x = ytz*x3;
}
® Letp = {x— 1,y — 2.z~ 3} be the address environment.
@ Let R, be the first free register, that is, i = 4.

code* x=y+z*3p = code} y+z+3p
move R, Ry

move Ry R»
code, z*3 p
add R4 R4 R5

Codeﬁ yv+z*3p

codeﬁ zx3p = move Rs Ry
coded 3 p
mul R5 Rs R(,

codeb 3p = loade Rs 3

~» the assignment x=y+z 3 is translated as

move Ry R>;move Rs R3;loade Ry 3; mul R Rs—Res Rs:move R| Ry
T 7103

Applying Translation Schema for Expressions

Suppose the following function

. void f (void) ({
IS given:

int x,y,z;

X = y+z*x3;
}
® Letp = {x+ 1,y 2,z 3} be the address environment.
@ Let R, be the first free register, that is, i = 4.

code x=y+zx3p = code} y+zx3p
move Ry Ry
code} y+z+x3p = move Ry R,
code} z+3p
add R4 R4 R5
code} zx3p = move Rs R3
= codef 3 p)
mul R5 R5 R@
6 N
Chapter 4:

Statements and Control Structures

25/103

26/103

About Statements and Expressions About Statements and Expressions

General idea for translation: General idea for translation: . C
code’ s p : generate code for statement s code' s p : generate code for statement s Ut n.j !
codey e p : generate code for expression ¢ into R; codey e p : generate code for expression e into R; J
Throughout: i,i + 1,... are free (unused) registers Throughout: i,i + 1,... are free (unused) registers
oo
For an expression x = e with p x = a we defined: For an expression x = e with p x = a we defined:
codef x=ep = codefz_e_ i code, x=ep = codekep SS + g b5y
move R, R; move R, R;
o . y .) 2 I(.
However, x = ¢ is also a statement: However, x = ¢ is also a statement:
e Define: (el —
cod®e, = es poo= (code’gel =ep { —C-
C > EthR
C S tis
The temporary register R; is ignored here. More general: he

code’ e p = codey € p

27/103 27/103

About Statements and Expressions Jumps

General idea for translation:
code’ 5 p : generate code for statement s

codeb e p : generate code for expression e into &;
Throughout: i,i + 1,. .. are free (unused) registers

. , . In order to diverge from the linear sequence of execution, we need
For an expression x = e with p x = a we defined:

—_ jumps:
codef x=ep = code}ep
move R, R; Jump A
However, x = ¢ is also a statement: = L] L1
@ Define,, — PC PC
- code’ e1 =2 p = codeh e =esrp PC=A;

The temporary register R; is ignored here. More general:
code’ e p = codej'{ ep

@ Observation: the assignment to ¢, is a side effect of the
evaluating the expression e; = e;.

27/103 29/103

Conditional Jumps

A conditional jump branches depending on the value in R;:

B 2z @2
Ri Jumpz Ri A Ri
] B -
PC PC
Ri jumpz Ri A Ri
[] ﬂ
PC PC

if (R, == 0) PC = A;

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.
@ during the translation of an 1£ (c) construct, it is not yet clear
where to jump to in case that c is false
@ instruction sequences may be arranged in a different order
@ minimize the number of unconditional jumps

@ minimize in a way so that fewer jumps are executed inside loops
e replace far jumps through near jumps (if applicable)
Sy

30/103

i

B

31/103

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.

@ during the translation of an if (c) construct, it is not yet clear
where to jump to in case that c s Talse

Management of Control Flow

In order to translate statements with control flow, we need to emit
jump instructions.
@ during the translation of an 1£ (c) construct, it is not yet clear
where to jump to in case that c is false
@ instruction sequences may be arranged in a different order
@ minimize the number of unconditional jumps

@ minimize in a way so that fewer jumps are executed inside loops
o replace far jumps through near jumps (if applicable)

@ organize instruction sequence into blocks without jumps

31/103

31/103

Basic Blocks and the Register C-Machine

The R-CMa features only a single conditional jump, namely jumpz.
]
' :

LN

Outgoing edges must have the following form:

32/103

Basic Blocks and the Register C-Machine

The R-CMa features only a single conditional jump, namely jumpz.

\.//

code ss

Outgoing edges must have the following form:
@ a single edge (unconditional jump), translated with jump
© two edges, one with ¢ = 0 as condition and one without
condition, translated with jumpz and jump, respectively
© a set of edges and one default edge, used for switch

statement, translated with jumpi and jump (to be discussed later)

32/103

Basic Blocks and the Register C-Machine

The R-CMa features only a single conditional jump, namely jumpz.

\.//

code ss

4 'Y
Qutgoing edges must have the following form:
@ a single edge (unconditional jump), translated with jump

—

“———

32/103

Formalizing the Translation Involving Control Flow
For simplicity of defining translations of instructions involving control
flow, we use symbolic jump targets.

@ This translation can be used in practice, but a second run
through the emitted instructions is necessary to resolve the
Y =g

——

symbolic addresses to actual addresses.

33/103

Formalizing the Translation Involving Control Flow
For simplicity of defining translations of instructions involving control
flow, we use symbolic jump targets.

@ This translation can be used in practice, but a second run

through the emitted instructions is necessary to resolve the
symbolic addresses to actual addresses.

@——4} = 94:&5«,&»&

Alternatively, we can emit relative jumps without a second pass: 7y %2
@ relative jumps have targets that are offsets to the current PC
@ sometime relative jumps only possible for small offsets (~ near
jumps)
@ if all jumps are relative: the code becomes position independent
(PIC), that is, it can be moved to a different address
@ the generated code can be loaded without relocating absolute

jumps

33/103

Simple Conditional

We first consider s = if (¢) ss.
...and present a translation without basic blocks.
Idea:

@ emit the code of_q_andﬂin sequence
@ insert a jump instruction in-between, so that correct control flow

is ensure
code’ sp = conR cp
- _ codep forc
jumpz R; A
code’ ss p jumpz ®
A ..
e code for ss
00 &

34/103

Formalizing the Translation Involving Control Flow
For simplicity of defining translations of instructions involving control
flow, we use symbolic jump targets.
@ This translation can be used in practice, but a second run
through the emitted instructions is necessary to resolve the
symbolic addresses to actual addresses.

Alternatively, we can emit relative jumps without a second pass:
@ relative jumps have targets that are offsets to the current PC
@ sometime relative jumps only possible for small offsets (~+ near
jumps)
e if all jumps are relative: the code becomes position independent
(PIC), that is, it can be moved to a different address
@ the generated code can be loaded without relocating absolute

jumps

generating a graph of basic blocks is useful for pregram optimization
where the statements inside basic blocks are simplified

33/103

General Conditional

e~ N
;f’/,/zé:j,f”"" code # code ee ”,",I/;jgggéij)
Bl __,,_r/’/

Translationof if (¢) 1t else ce.

. codep forc
code' if(c) ftelseeep =
R . -
codey ¢ p jumpz L
jumpz K, A
umpz R;
JUmPZ 2L code for tt
code' t p
aui— -
jump B Jump ®
A: code eep
- = code for ee -~
5
o000 -

35/103

Example for if-statement

Let p = {x— 4,y — 7} and let s be the statement

if (x>y) | S (i) #/
X =x - y; /% (i) */
} else {
y =y - X; S (iil) */

}

Then code’ s p yields: «

coteg <
CA)”‘I-/Z“] '?

gr R R Risa
pup s BT A
,-,},-,c._*-' w = KTy
A ‘?”“7‘(‘
B : 36/103

