Script generated by TTT

Title: Simon: Compilerbau (16.06.2014)
Date: Mon Jun 16 14:16:33 CEST 2014
Duration: 90:22 min

Pages: 29

Goal of Type Checking

In most mainstream (imperative / object oriented / functional)
programming languages, variables and functions have a fixed type.
for example: int, void*, struct { int x; int y; }.

— £l
Types are useful to
@ manage memory
@ to avoid certain run-time errors

In imperative and object-oriented programming languages a
declaration has to specify a type. The compiler then checks for a type
correct use of the declared entity.

Chapter 1:
Type Checking

Type Expressions

Types are given using type-expressions.
The set of type expressions 7 contains:

@ base types: int, char, float, void, ...
@ type constructors that can be applied to other types

g € (
@ arrays: ,[]

+ et
tel

o the size of an array can be specified

@ the variable to be declared is written between and [n

example for type constructors in C:

@ records: struct { 1{a)...n{a))
@ pointer: 1 *

e
o the varable to be declared is written between ¢ and (1, ..., 1)
@ in ML function types are written as: 1 = ... %1, — ¢

Cond K wed st .
ik — (ot 7> At

*
-
.
.

X

30

30

Type Definitions in C Type Checking

A type definition is a synonym for a type expression. Problem:
In C they are introduced using the typedef keyword. ’
Type definitions are useful Given: a set of type declarations I' = {1, x;. .. 1, %u; }
@ as abbreviation: Check: Can an expression ¢ be given the type ?
typedef struect { int x; int y; } point_t; Exam p|e:

@ to construct recursive types:
— struct list { int info; struct listx next; };

Possible declaration in C: more readable: int f(struct lists 1) { return 1; };
struct { struct listx c;}*-lg;
struct list { typedef struct list list_t; intx aflll];
int info; struct list {
struct listx next; int info;
} : list_t+ next; Consider the expression:
struct list* head; list_t* head; xal[f(b->c) 1+2;
Type Checking using the Syntax Tree Type Systems
Check the expression xa [f (b—>c)]+2:
Formal consider judgements of the form:
Phe:
j // (in the type environment I the expression e has type 1)
Xloms:
T
-~ . Const: I'kFc: 1, (7. type of constant ¢)
Var: ' Fx: ‘l;:g) (x Variable)
[b] .
|dea Regeln.
@ traverse the syntax tree bottom-up
@ for each identifier, we lookup its type in I Ref: _LlPe:d Deref: Lher tx
: S TyPe I © T F&e :_tx © T Fxe:

@ constants such as 2 or 0.5 have a fixed type
@ the types of the inner nodes of the tree are deduced using_typing

rles

Type Systems for C-like Languages
[recds [Mreg fuf
Mre,+e, " t%

. - Op+
More rules for typing an expression:

. I' e @ tx I' Fey @ int
Array: TF erfe) T
) ke : t]] I' e : int
Array. r |‘€1[6’2] 3
) I' e : struct {t; ai;...t, G}
Struct: T Fea - 0
) I’ F@ 8 #flingsoss) I TR Sl
App: = I Fe(er,....em) Pt
i I'Fe; : int [' Fe, : int
Op: I' ey +ey : int
Cast: I'Fe: 1 rcanbeconvertedto
I' + (12)8)
M, 1 F¥ Tt Tx a. + (LJJ 2y
o —-e :T#& ~
F e, t
Example: Type Checking
Expression «a [f (b->c)] +2:
+ | int
\\\
int * int
int« |[]
int«[] [a () int

/// \\\
int (struct list %)

struct {struct list « ¢;}

struct {struct list« c;} « | b |

struct list

12/30

Example: Type Checking

Given expression xa [f (b—>c)]+2 and ' = {

struct list { int info; struect list+ next; };
int f(struct list* 1);
struct { struct list+ c;}+ b;

sﬁm‘ Lot g

Yre . T O}Wf
T I o A
F%G’b}?c.‘(’&"#’ﬂ”&ﬁxﬁa /
Sm TH0C e E:T'Q)

7 Trad@ Tl
: —
("Fal [[}%c)], Donef m@&

Tl (& +e)33 ~
e T

¢ s st bl
[> yk

11/30

Equality of Types

Summary type checking:

@ Choosing which rule to apply at an AST node is determined by
the type of the child nodes

@ -~ determining the rule requires a check for equality of types

type equality in C:
® struct & (] and struct B {} are considered to be different

@ ~ the compiler could re-order the fields of A and B independently
(not allowed in C) -7

o to extend an record 2 with more fields, it has to be embedded into
another record:

typedef struct B {
struct A a;

int
} extension_of_A;

@ after issuing typedef int joF, the types C and int are the
same

13/30

Structural Type Equality

Alternative interpretation of type equality (does not hold in C):

semantically, two type 1,,t, can be considered as equal if the accept
the same set of access paths.

Example:

struct listl {

struct list Lis
int info;

int info;

struct list* next; struct {
} - int info;
struct listlx next;
}* next;

}

Consider declarations struct list+ 1 andstruct listls* 1.
Both allow

1->info 1->next->info

but the two declarations of 1 have unequal types in C.

14/30

Rules for Well-Typedness

nn mm [4]
te b
e []

-

b
I

-]

‘ struct {s; a;; ... sn A }| struct {7, ai; - by A } ‘

S R Sm fm

16/30

Algorithm for Testing Structural Equality

ldea:

@ track a set of equivalence queries of type expressions
@ if two types are syntactically equal, we stop and report success

@ otherwise, reduce the equivalence query to a several
equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduces using type equalities of
the form:

A =1

(we omit the I'). Then define the following rules:

Example:

A

= struct {int info; A « next; }
B =

struct {int info;
struct {int info; B * next; } * next; }

We ask, for instance, if the following equality holds:
struct {int info; A *next;} = B

We construct the following derivation tree:
phad (ok ey Au e
,,,;,u
4_!‘ o aéi Wﬁf
A M(«A e, By nond)
A.,«#{w’"‘“{'/ 4(wwf), bal{ sk who, K*M{J

/ l

15/30

17/30

Proof for the Example:
A =
B =

struct {int info; A = next; }
struct {int info;
struet {int info; B * next; } * next; }

‘ struct{int info; Axnext;} |B |

| struct{intinfo; Axnext;} | struct{intinfo;... xnext;} |
int | int [Ax]. #]
[| | A | struct{int info; B = next; } |
| struct{int info; A * next; } struct{int info; B * next; } |

int | int EEl
. B

| struct{int info; A x next; }

18/30

Overloading and Coercion

Some operators such as + are overloaded:
a—

@ + has several possible types
for example: int + (int, int), float + (float, float)
but also float* + (floatx, int),intx + (int, intx)

@ depending on the type, the operator + has a different
implementation -

@ determining which implementation should be used is based on
the arguments only

Coercion: allow the application of + to int and float.
@ instead of defining + for all possible combinations of types, the
arguments are automatically coerced

@ this coercion may generate code (z.B. conversion from intto
float)

@ coersion is usually done towards more general types i.e. 5+0.5
has type float (since £loat > int)

20/30

Implementation
We implement a function that implement the equivalence query for
two types by applying the deduction rules:
@ if no deduction rule applies, then the two types are not equal

@ if the deduction rule for expanding a type definition applies, the
function is called recursively with a potentially larger type

@ during the construction of the proof tree, an equivalence guery
might occur several times

@ in case an equivalence query appears a second time, the types
are by definition equal

Termination?
@ the set D of all declared types is finite
@ there are no more than _l_)ﬁ different equivalence queries

@ repeated queries for the same inputs are are automatically
satisfied

~+ termination is ensured

Coercion of Integer-Types in C: Promotion

C defines special conversion rules for integers: promotion

unsigned char

unsigned short
signed char signed short -
e -128.. 127 Ora T2

27
. whered conversion has to happen via all intermediate types:

< int < unsigned int

subtl ?r ors p055| ! Compute the character distribution of str:
ﬂf «5 .(r deopl = 0/
char~ str = "..."; \D

-

int dist[256];
qum— ———

memset (dist, 0, sizeof(dist));

while (*str) {
dist [(unsigned) «str]++;
SigiEarar g

}:

Note: unsigned is shorthand for unsigned int.
--___-

19/30

4 &- 4]

21/30

Subtypes

@ on the arithmetic basic types char, int, long, etc. there exists
a rich subtype hierarchy
@ here 1, < 1;, means that the values of type 1,
Q Torm a subset of the values of type -;

@ can be converted into a value of type #:;
© fulfill the requirements of type .

Example: assign smaller type (fewer values) to larger type

M [S o
M L5} }’;
y=x

extend the subtype relationship to more complex types

Rules f2r Well-Typedness of Subtyping

]]]
. 517]

-]

|.§‘>%< T*‘

517]

&

ISt n)iz S
‘ struct {5’” aj; ... 85, 4,3 }| struct {Tl ap, ... fpag. } ‘

] - AR

strugglint u, int v} x;
240

struct {inf u} y;
y=x

b & Aol

22/30

24/30

Example: Subtyping

Observe:

string extractInfo(struct { string info; } x) {
return x.info; (_'/L/;'

}

@ we would like extract Info to be applicable to all argument
records that contain a field string info

@ use deduction rules to describe when 1, < 1, should hold

@ the idea of subtyping on values is related to subtyping as
implemented in object-oriented languages

- ‘ . Wy
¥Y=x

Rules and Examples for Subtyping
<
| S0 (Sl, s ,-Sm) J__Tn (fh S ,-fm) ‘

/==
sl
< =

Examples:
/:""I' x (M}i struct {intg; int b;} < struct {floata; }
,;ﬁﬂf- 4 (}‘“0/‘ int (int) < float (float)
— int (float) < float (int)
t? - kr T

Attention: R
@ For functions: /'W‘ = W
@ the return types are in normal subtype relationship
@ for argument types, the subtype relation reverses

23/30

25/30

Co- and Contra Variance

Definition
Given two function types in subtype relation so(sy,...5,) < to(t1,. .- 1)
then we have

@ co-variance of the return type s, < 1, and

@ contra-variance of the arguments s; > #; flir 1 <i <n

Example from function languages:

int (float — int} < int intﬁ»float)
= PV - NV B
(Yt > nt) B ik > fiot)
s> ;:f-z::,«:li/l Me%j A MEM

These rules can be applied directly to test for sub-type relationship of
recursive types

26/30

Subtypes: Application of Rules (ll)

Check if Sy < 8y

Ry = struct {inta; R (R) f;}
S, = struct {inta; int b; S;(S;) f;}
Ry = struct {int a; Ry (53] [;}
S = struct {int g; int b; S> (R>) f; }
Iﬁ—\sg A<
a b N
int | int
l/

28/30

Subtypes: Application of Rules ()

Check if S1 < Ry:

Ry = struct{inta; R, (R))f;}
Si = struct {inta; int b; S, (S)) f;}
R, = struct {inta; R>(S:)f;}
S, = struct {int a; int b; S, (Ry) f; }
<
S1|R
a N f
[int | int | L Si(S) | Ri(Ry) |
< &

[SilRe] [Ri]S1]

Subtypes: Application of Rules (lll)

Check if S> < Ry

R, = struct {inta; Ry (R) f;}
S = struct {inta; int b; S| (S)) f;}
R, = struct {inta; R (52) f;}

el
I
Il

struct {int @; int b; S» (R2) f5}

\ int

27/30

29/30

Discussion

for presentational purposes, proof trees are often abbreviated by
omitting deductions within the tree -

structural sub-types are very powerful and can be quite intricate
to understand

Java generalizes records to objects/classes where a sub-class A
inheriting form base class O is a subtypeﬁg 0 ~

subtype relations between classes must be eﬁlici;ly declared

inheritance ensures that all sub-classes contain all (visible)
components of the super class

a shadowed (overwritten) component in A must have a subtype
of the the component in O

Java does not allow argument subtyping for methods since it
uses different signatures for overloading

30/30

Discussion

for presentational purposes, proof trees are often abbreviated by
omitting deductions within the tree

structural sub-types are very powerful and can be quite intricate
to understand

Java generalizes records to objects/classes where a sub-class A
inheriting form base class O is a subtype A < O

subtype relations between classes must be explicitly declared

inheritance ensures that all sub-classes contain all (visible)
components of the super class

a shadowed (overwritten) component in A must have a subtype
of the the component in O

Java does not allow argument subtyping for methods since it
uses different signatures for overloading

30/30

