Script generated by TTT

Title: Simon: Compilerbau (26.05.2014)
Date: Mon May 26 14:18:10 CEST 2014
Duration: 87:37 min

Pages: 55

Semantic Analysis

Scanner and parser accept programs with correct syntax.
@ not all programs that are syntacticallly correct make sense

3/188

Topic:

Semantic Analysis

2/188

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

o these programs are rejected and reported as grronegus
o the language definition defines what erroneous means

3/188

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

e these programs are rejected and reported as erroneous
o the language definition defines what erroneous means

@ semantic analyses are necessary that, for instance:

@ check that identifiers are known and where they are defined

@ check the type-correct use of variables
._'_,__—_l

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

e these programs are rejected and reported as erroneous
e the language definition defines what erroneous means

@ semantic analyses are necessary that, for instance:

e check that identifiers are known and where they are defined
@ check the type-correct use of variables

@ semantic analyses are also useful to
o find possibilities to “optimize” the program
@ warn about possibly incorrect programs

~ a swme syntax tree with attributes

3/188

3/188

Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

o these programs are rejected and reported as erroneous
o the language definition defines what erroneous means

@ semantic analyses are necessary that, for instance:

@ check that identifiers are known and where they are defined
@ check the type-correct use of variables

@ semantic analyses are also useful to (0‘. — 9,,\
o find possibilities to “optimize” the program E___&,—
e warp about possibly incorrect programi,}!‘ (- £o= b.\ {

3/188

Chapter 1: o
"Aftribute Grammars

4/188

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the fype of
that node (which is usually a non-terminal)
@ we call this a local computation:
e only accesses already computed information from neighbouring
nodes
e computes new information for the current node and other
neighbouring nodes = — ﬁ 4.£
Definition attribute grammar
ﬁ-———____-___/
An attribute grammar is a CEG extended by

@ an gef of attributes for each non-terminal and terminal
@ |ocal aftribute equations

5/188

Example: Computation of the empty[r| Property

Consider the syntax tree of the regular expression (a|b)*a(alb):

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the type of
that node (which is usually a non-terminal)
@ we call this a local computation:
o only accesses already computed information from neighbouring
nodes
o computes new information for the current node and other
neighbouring nodes

Definition attribute grammar

An atiribute grammar is a CFG extended by
@ an set of atiributes for each non-terminal and terminal
@ local attribute equations

@ in order to be able to evaluate the attribute equations, all
attributes mentioned in that equation have to be evaluated

already
~+ the nodes of the syntax tree need to be visited in a certain
sequence

5/188

Example: Computation of the empty[r| Property

Consider the syntax tree of the regular expression (a|b)*a(a|b):

6/188

6/188

Implementation Strategy

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a_depth-first traversal:

o at a leaf, we can compute the value of empty without considering
othér nodes

o the attribute of an inner node only depends on the attribute of its
children

@ the empty attribute is a synthetic attribute
@ it may be computed by a prﬁ or post-order traversal

7/188

Attribute Equations for empty

In order to compute an gjidbw , we need to specify attribute
_equations for each node.

These equations depend on the fype of the node:
pciund

T
for leafs: r = we define empty[r] = (x=¢).
— — S
otherwise:
¥-s rir empty[r | o] = _empty[ri] v empty[r,]
empty[r; -] = emply[r] A empty(r,]
emptylri] = 1
[=

empty[r?] t

8/188

Implementation Strategy

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a depth-first traversal:

o at a leaf, we can compute the value of empty without considering
other nodes

o the attribute of an inner node only depends on the attribute of its
children

@ the empty attribute is a synthetic attribute

@ it may be computed by a pre- or post-order traversal
in general:
Definition
An attribute is called

@ synthetic if its value is alwayg propagated upwards in the tree (in
the direction leaf

@ inherited if its value is always propagated downwards in the tree
(in the direction root — leaf)

Specification of General Attribute Systems

The empty attribute is synthetic, hence, the equations computing it
can be given using structural induction.
e e e

71188

9/188

Specification of General Attribute Systems
The empty attribute is synthetic, hence, the equations computing it
can be given using structural induction.
In general, attribute equations combine information for children and
p/aﬁa,ms.
@ ~ need a more flexible way to specify attribute equations that
allows mentioning of parents and children
@ use consecutive indices to refer to neighbouring attributes
b +—>E+E
the attribute of the current node —— —
the attribute of the i-th child (i > 0)

empty[0] :
empty|[i] :

... In the example:

: empty[0] = (x=¢)
Y= 1—\ r n emﬂw_[_(-)_}- = empty[1] vV empty[2
empty[0] := empty[l] A empty[2]
r ook empty[0] = £
: empty|0] t

9/188

Observations

@ the /ocal attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations
@ in order to construct this algorithm, we need
@ asequence in which the nodes of the tree are visited
@ asequence within each node in which the equations are evaluated
@ this evaluation sirategy has to be compatible with the
dependencies between attributes

We illustrate dependencies between attributes using directed graph
edges:

~» arrow points in the direction of information flow

10/188

Observations

@ the /ocal attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations

@ in order to construct this algorithm, we need

@ aseguence in which the nodes of the tree are visited
© asequence within each node in which the equations are evaluated

@ this evaluation strategy has to be compatible with the
dependencies between attributes
e]

10/188

Observations

@ in order to infer an evaluation strateqy, it is not enough to
consider the /ocal attribute dependencies at each node
@ the evaluation strategy must also depend on the global
dependencies, that is, on the information flow between nodes
@ the global dependencies thus change with each new abstract
syntax tree
@ in the example, the information flows always from the children to
the parent node
~+ a depth-first post-order traversal is possible
@ in general, variable dependencies can be much more
. ——
complicated

11/188

Simultaneous Computation of Multiple Attributes

Compute empty, first, next of regular expression:

d . emplylo] = empty[l]
- first[0] = first[1]
next(l] = 0
7 : empty[0] = (x=e
= firsto] = {x x;ée}
/f (no eqguation for next)
D,
e
o
ajo
e e [] \&Y/

Regular Expressions: Rules for Concatenation

E—E-E| : empty[0] := empty[l] A empty[2]

' first[0] = first[1] U (empty][1] 7 first[2] : @)
next[1] = first[2] U (empty([2] ? next[0]: ¥)
nextl2] = next[0]

Dy :

3 [

Regular Expressions: Rules for Alternative

empty[1] V empty[3]
first[1] U first[g]
next[0]

next[0]

Regular Expressions: Kleene-Star and ‘?’

13/188

F%irstm 40 v {1

first[1] U next[U]

t
first[1]
next[0]

Dy :

||?|
9

||?\

[o}=—-1>]

et (0]

15/188

Challenges for General Attribute Systems
@ assume that the grammar Gr has no useless productions
@ let T _denote all derivable syntax trees of Gr
@ an evaluation strategy can only exist if for any abstract syntax
tree r € T, the dependencies between attributes are acyclic

16/188

Challenges for General Attribute Systems
@ assume that the grammar Gr has no useless productions
@ let 7 denote all derivable syntax trees of Gr
@ an evaluation strategy can only exist if for any abstract syntax
tree r € T, the dependencies between attributes are acyclic
Consider the 6 productions of the regular expression grammar:

i1 S—E 4 E—E-E
2 E—x 5 E—Ex
3 E—E|E 6 E—E?

|dea: Compute a directed graph D; for each production i.
o the vertices of D'; are its Ihs attributes a,[0]. .. . a, (0]

@ an edge a;[0] Tﬂﬁ)] indicates a;[0] must be evaluated so that
visiting the production can compute ;0]

@ for productions whose rhs only contains terminals D; = D;

@ compute new edges for other productions based 6n the current
edges of its rhs non-terminals (~ next slide)

@ when no new edges can be added, the graphs D’; denote the
dependencies of all possible derivation trees ~

@ no. of edges in each graph is finite «»Wanteed

16/188

Challenges for General Attribute Systems
@ assume that the grammar Gr has no useless productions
@ let 7 denote all derivable syntax trees of Gr
@ an evaluation strategy can only exist if for any abstract syntax
free 1 € T, the dependencies between atiributes are acyclic
Consider the 6 productions of the regular expression grammar:

D, 1 SoE 4 E-EE
2 E—x 5 E—Ex
3 ESEE 6 EE?

16/188

Computing Dependencies « N -/, .- Mon v
Define D/[G,. .. G,] to be the graph obtained from D} by adding an
edge ffom a; 0] 1o (0] if there is a path from ;[0] t0 4;[0] in the
dependency graptrD; where graphs G; give the dependencies for the
corresponding rhs-attributes. Abort when cgcles exists.

17/188

Computing Dependencies

Define D{[G,...G,] to be the graph obtained from D; by adding an
edge from «;[0] to ;[0] if there is a path from «;[0] to 4;[0] in the
dependency graph D; where graphs G; give the dependencies for the
corresponding rhs-attributes. Abort when cycles exists.

Example: D}[G,, G, Gs]: Dependency graph of Dy :

f e

| (B) 1

Suppose graph G, is empty and graphs G, and G; are as follows:

f|e f]]e
i |

17/188

Computing Dependencies

Define D![G,,. .. G,] to be the graph obtained from D! by adding an
edge from «;[0] to 4;[0] if there is a path from «;[0] to 4;[0] in the
dependency graph D; where graphs G; give the dependencies for the
corresponding rhs-attributes. Abort when cycles exists.

Example: D}[G,. G, G3]: Dependency graph of D, :

Suppose graph G, is empty and graphs G, and G5 are as follows:

(] [¢] alE
A

Edges added to Dj: Which edges are added for D, [G3, G, G1]?

] [e] ; sﬁl B

Computing Dependencies

Define D;[G.. .. G,] to be the graph obtained from D; by adding an
edge from 4;[0] to 4;[0] if there is a path from ;[0] to 4;[0] in the
dependency graph D; where graphs G, give the dependencies for the
corresponding rhs-attributes. Abort when cycles exists.

Example: D}[G,,G,, G3]: Dependency graph of D, :

t e

(B ¥

Suppose graph G, is empty and graphs G, and G; are as follows:

f‘e f [e
L .

Edges added to Dj:

: ﬂ 17/188

Complexity of Computing Dependencies

p rule 2 p rule D,

1 S-E 4 E-EE n[0]
2 E—x n[0] 5 E—FEx n[0]
3 E—EIE n[0] 6 E—E? n[0]

Add edges by repeatedly evaluating until stable:

Di[G1] for G, e {D),...D,}

D}[G1, Gy, G4 for G\, Gs € {D;,... D}, G; empty
D}[G1, G2, G3] for G,Gs € {D}, ... Dy}, Go empty
DG, G,] for G\ € {Dj,... D}, & empty
DG, G;] for G, € {D),...D,}, G, empty

18/188

Complexity of Computing Dependencies

p rule D, p rule D,

1 SSE 4 ESEE n[0]
2 E-x n|0] 5 E—Ex n[0]
3 E-E|E n|0] 6 E—E? n|0]

Add edges by repeatedly evaluating until stable:

D} [G] for G, € {D5,... Dy}

Dj[Gy, G2, G4 for G\,Gs € {D4,...Dg}, G, empty
Dy [G1, G2, G4 for G1.Gs € {D3,... D¢}, G> empty
DGy, G2 for G, € {D5. ... D¢}, G, empty

D [Gy, Go] for G, € {D},... D}, G, empty

e for n attributes, there are n* possible edges
@ worst case: only one edge is added in each evaluation of_g;

@ checking that no cyclic attribute dependencies can arise is
DEXPTIME-complete [Jazayeri, Odgen, Rounds, 1975] /.
._-—-"-'_‘--‘

18/188

Example: Checking Circularity

rue D

P ;
Grammar: 1 S—L Jjlo

2 L—a J10] « k[0]
3 L—b — Jlo] k[0]

Dependency graphs D,,:
h @

n [(L) O

h] [0 é h‘T ém

Apply until stable:
D[G)] for G, € {D5, D}

19/188

Example: Checking Circularity

p rule D[’)

Grammar: 1 S—L Jl0]
2 L-a Jlo] k[0]
3 L—b o] o]

Dependency graphs D,

h [T (L h% L

Apply until stable:

D [Gy] for G, € {D},D}}

Strongly Acyclic Attribute Dependencies

Problem: with larger grammars, this algorithm is {oo_expensive
Goal: find a sufficient condition for an attribute system to be acyclic
—

19/188

20/188

Strongly Acyclic Attribute Dependencies

Problem: with larger grammars, this algorithm is too expensive
Goal: find a sufficient condition for an attribute system to be acyclic

|dea: Compute dependency graph D., for each non-terminal s € N.
o for all productionsg — 11 ...1, With ; terminals:
Dy, = D; U...UD; where ij,...i are the productions indices

@ compute D, |G, ... G,] for each production N = s, . . .s, where G,
is the graph between a;,[0], . . . a;,[0] of s,
————g—n. -

@ re-evaluate each rule until none of the graphs change anymore

@ if a cycle is detected during the computation of D}, report “may
have cycle” -

20/188

Example: Strong Acyclic Test
Consider again the grammar S—L, L—a | b. Dependency graphs D,,:

@n(?f
S ® i

L) (1] (1 0 (L OE

g v

@ for all productions N — #; .. .1, with ¢; terminals:
D) = D; U...UD,; where i,...i are the productions indices

@ compute D} [Gy,...G,] for each production N — s, . ..s, where G;
is the graph between a,, [0], .. .4;,[0] of 5;

W] 1]

p rule

1 S—L N D}

2 L-a S Jl0]
3 L—=bh L

— J[0] « &[0]
21/188

Example: Strong Acyclic Test
Consider again the grammar S—1, L—a | b. Dependency graphs D,

h] (k) [[x] (L) GI

B Vo

@ for all productions N — 1, ... t, with #; terminals:
D), = D; U...UD, where iy, ...i are the productions indices

@ compute D}[G,...G,] for each production N — s, .. .s, where G;
is the graph between «;, [0], . . . a;,[0] of s;

p rule

1 SoL N D)

2 L—a S jlo]

3 Lb L &[0 j[0] &~K[0]

Strong Acyclic and Acyclic

The grammar S—L, L—a | b has only two derivation trees which are
both acyclic:

i

| b

n

%
afx o
|,

Itis not strongly acyclic since the dependence graph for the
non-terminal L has a cycle when computing Dj:

21/188

22/188

From Dependencies to Evaluation Strategies
Possible strategies:

From Dependencies to Evaluation Strategies
Possible strategies:
@ let the user define the evaluation order
@ automatic strategy based on the dependencies:
@ use local dependencies to determine which atiributes to compuie
- i [e]
@ suppose we require y/[1]
@ computing /1] requigs T

@ depends on an attribute in the child,
so descend

@ compute attributes in passes

@ compute a dependency graph between
attributes (no go if cyclic)

o traverse AST once for each attribute; here |
three times, once fore.f, g \l\

@ compute one attribute in each pass

(0 [e] (")

23/188

23/188

From Dependencies to Evaluation Strategies
Possible strategies:
@ let the user define the evaluation order

From Dependencies to Evaluation Strategies
Possible strategies:
@ let the user define the evaluation order
@ automatic strategy based on the dependencies:
o use local dependencies to determine which atiribuies to compute

][]
o depends on an attribute in the child,

so descend fl[e |

@ suppose we require s[1]
@ computing s[1] requires

@ compute attributes in passes

@ compute a dependency graph between
attributes (no go if cyclic)

o traverse AST once for each attribute; here |
three times, once for e, f, W

@ compute one attribute in each pass ‘

E

© consider a fixed strategy and only allow an attribute system that
can be evaluated using this strategy

23/188

23/188

Linear Order from Dependency Partial Order

Possible aufomatic strategies:

24188

Linear Order from Dependency Partial Order

=

Possible aufomatic strategies:

@ demand-driven evaluation
o start with the evaluation of any required attribute
o if the equation for this attribute relies on as-of-yet unevaluated
attributes, compute these recursively
@ ~ visits the nodes of the syntax tree on demand
@ (following a dependency on the parent requires a pointer to the
parent)

© evaluation in passes
@ minimize the number of visits to each node
@ organize the evaluation of the tree in passes
e for each pass, pre-compute a strategy to visit the nodes together
with a local strategy for evataation within each node type

consider example for demand-driven evaluation
M "

24/188

Linear Order from Dependency Partial Order

Possible automatic strategies:

@ demand-driven evaluation
o start with the evaluation of any required attribute
o if the equation for this attribute relies on as-of-yet unevaluated
attributes, compute these recursively
@ -~ visits the nodes of the syntax tree on demand
e (following a dependency on the parent requires a pointer to the
parent)

© evaluation in passes
o minimize the number of visits to each node
@ organize the evaluation of the tree in passes
e for each pass, pre-compute a strategy to visit the nodes together
with a local strategy for evaluation within each node type

—

24/188

Example for Demand-Driven Evaluation
Compute next at the leaves of a(a|b) in the expression ((a|b) a(alb)):

m : next[l] := next[0]
next2] := next[0]

-] : next[l] := first[2] U (empty[2] 7 next[0]:0)
next2] := next[0]

25/188

Example for Demand-Driven Evaluation
Compute next at the leaves of «(al|b) in the expression ((a|b)*a(alb)):

m : next[l] := next[0]
next2] := next[0]

[] : next[l] := first[2] U (empty[2] 7 next[0]: @)
nextl2] := next[0]

Demand-Driven Evaluation

Observations

® only required attributes are evaluated

@ the evaluation sequence de s — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated

@ the algorithm may visit nodes more often than necessary
e e e e e,

@ each node must contain a pointer to its parent

@ the algorithm is not local

—— e

25/188

26/188

Example for Demand-Driven Evaluation
Compute next at the leaves of a{a|b) in the expression ((a|b)*a(alb)):

m : next[l] := next[0]
next2] := next[0]

-]« next[l] := first[2] U (empty[2] 7 next[0]: @)
next2] := next[0]

25/188

Demand-Driven Evaluation

Observations

@ only required attributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary
@ each node must contain a pointer to its parent
@ the algorithm is not local
approach only beneficial in principle:
@ evaluation strategy is dynamic: difficult to debug
@ computation of all attributes is often cheaper
@ usually all attributes in all nodes are required

26/188

Demand-Driven Evaluation

Observations
-__*_________________“_.——“

@ only required attributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary

@ each node must contain a pointer to its parent

@ the algorithm is not local

approach only beneficial in principle:
@ evaluation strategy is dynamic: difficult to debug
@ computation of all attributes is often cheaper
@ usually all attributes in all nodes are required

~ perform evaluation in passes

26/188

Evaluation in Passes
|dea: traverse the syntax tree several times; each time, evaluate all
those equations ali,| = f(b[is], . .. z[i:]) whose arguments b[iy], . .. z[i]
are known
For a strongly acyclic attribute system:

@ the local dependencies in D; of the ith production N — s1. .. s,
together the dependencies D: for each s; define a sequence in
which attributes can be evaluated

@ determine a sequence in which the children are visited so that as
many attributes as possible are evaluated

@ in each pass at least one new atiribute is evaluated

@ requires at most n passes for evaluating » attributes

@ since a traversal strategy exists for evaluating one attribute, it
might be possible to find a strategy to evaluate more attributes -~
optimization problem

e note: evaluating attribute set {a;, [0] .. .4, [0]} for rule
N — ...N... may evaluate a different attribute set of its children
~+ up to 2¥ — 1 evaluation functions for N

...in the example:

@ empty and first can be computed together
@ next must be computed in a separate pass

27/188

Evaluation in Passes
Idea: traverse the syntax tree several times; each time, evaluate all
those equations ali,] = f(b[is, . .. z[i;]) whose arguments b[iy], . .. z[i.]
are known
For a strongly acyclic atiribute system:

@ the local dependencies in D; of the ith production N — 51 . .. s,
together the dependencies D! for each s; define a sequence in
which attributes can be evaluated

@ determine a sequence in which the children are visited so that as
many attributes as possible are evaluated

@ in each pass at least one new attribute is evaluated

@ requires at most n passes for evaluating » attributes

@ since a traversal strategy exists for evaluating one attribute, it
might be possible to find a strategy to evaluate more attributes ~-
optimization problem

@ note: evaluating attribute set {a;[0]...a; [0]} for rule
N — ...N... may evaluate a different affribute set of its children
~+ up to 28 — 1 evaluation functions for N

27/188

Implementing State

Problem: In many cases some sort of state is required.
Example: numbering the leafs of a syntax tree

28/188

