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Semantic Analysis

Scanner and parser accept programs with correct syntax.
@ not all programs that are syntacticallly correct make sense
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Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

o these programs are rejected and reported as grronegus
o the language definition defines what erroneous means
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Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

e these programs are rejected and reported as erroneous
o the language definition defines what erroneous means

@ semantic analyses are necessary that, for instance:

@ check that identifiers are known and where they are defined

@ check the type-correct use of variables
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Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

e these programs are rejected and reported as erroneous
e the language definition defines what erroneous means

@ semantic analyses are necessary that, for instance:

e check that identifiers are known and where they are defined
@ check the type-correct use of variables

@ semantic analyses are also useful to
o find possibilities to “optimize” the program
@ warn about possibly incorrect programs

~ a swme syntax tree with attributes
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Semantic Analysis

Scanner and parser accept programs with correct syntax.

@ not all programs that are syntacticallly correct make sense
@ the compiler may be able to recognize some of these

o these programs are rejected and reported as erroneous
o the language definition defines what erroneous means

@ semantic analyses are necessary that, for instance:

@ check that identifiers are known and where they are defined
@ check the type-correct use of variables

@ semantic analyses are also useful to (0‘. — 9,,\
o find possibilities to “optimize” the program E___&,—
e warp about possibly incorrect programi,}!‘ (- £o= b.\ {
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Chapter 1: o
"Aftribute Grammars
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Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the fype of
that node (which is usually a non-terminal)
@ we call this a local computation:
e only accesses already computed information from neighbouring
nodes
e computes new information for the current node and other
neighbouring nodes = — ﬁ 4.£
Definition attribute grammar
ﬁ-———____-___/
An attribute grammar is a CEG extended by

@ an gef of attributes for each non-terminal and terminal
@ |ocal aftribute equations
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Example: Computation of the empty[r| Property

Consider the syntax tree of the regular expression (a|b)*a(alb):

Attribute Grammars
@ many computations of the semantic analysis as well as the code
generation operate on the syntax tree
@ what is computed at a given node only depends on the type of
that node (which is usually a non-terminal)
@ we call this a local computation:
o only accesses already computed information from neighbouring
nodes
o computes new information for the current node and other
neighbouring nodes

Definition attribute grammar

An atiribute grammar is a CFG extended by
@ an set of atiributes for each non-terminal and terminal
@ local attribute equations

@ in order to be able to evaluate the attribute equations, all
attributes mentioned in that equation have to be evaluated

already
~+ the nodes of the syntax tree need to be visited in a certain
sequence
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Example: Computation of the empty[r| Property

Consider the syntax tree of the regular expression (a|b)*a(a|b):
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Implementation Strategy

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a_depth-first traversal:

o at a leaf, we can compute the value of empty without considering
othér nodes

o the attribute of an inner node only depends on the attribute of its
children

@ the empty attribute is a synthetic attribute
@ it may be computed by a prﬁ or post-order traversal
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Attribute Equations for empty

In order to compute an gjidbw , we need to specify attribute
_equations for each node.

These equations depend on the fype of the node:
pciund

T
for leafs: r = we define  empty[r] = (x=¢).
— — S
otherwise:
¥-s rir empty[r | o] = _empty[ri] v empty[r,]
empty[r; -] = emply[r] A empty(r,]
emptylri] = 1
[ =

empty[r?] t
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Implementation Strategy

@ attach an attribute empty to every node of the syntax tree
@ compute the attributes in a depth-first traversal:

o at a leaf, we can compute the value of empty without considering
other nodes

o the attribute of an inner node only depends on the attribute of its
children

@ the empty attribute is a synthetic attribute

@ it may be computed by a pre- or post-order traversal
in general:
Definition
An attribute is called

@ synthetic if its value is alwayg propagated upwards in the tree (in
the direction leaf

@ inherited if its value is always propagated downwards in the tree
(in the direction root — leaf)

Specification of General Attribute Systems

The empty attribute is synthetic, hence, the equations computing it
can be given using structural induction.
e e e

71188
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Specification of General Attribute Systems
The empty attribute is synthetic, hence, the equations computing it
can be given using structural induction.
In general, attribute equations combine information for children and
p/aﬁa,ms.
@ ~ need a more flexible way to specify attribute equations that
allows mentioning of parents and children
@ use consecutive indices to refer to neighbouring attributes
b +—>E+E
the attribute of the current node —— —
the attribute of the i-th child (i > 0)

empty[0] :
empty|[i] :

... In the example:

: empty[0] = (x=¢)
Y= 1—\ r n emﬂw_[_(-)_}- = empty[1] vV empty[2
empty[0] := empty[l] A empty[2]
r ook empty[0] = £
: empty|0] t
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Observations

@ the /ocal attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations
@ in order to construct this algorithm, we need
@ asequence in which the nodes of the tree are visited
@ asequence within each node in which the equations are evaluated
@ this evaluation sirategy has to be compatible with the
dependencies between attributes

We illustrate dependencies between attributes using directed graph
edges:

~» arrow points in the direction of information flow
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Observations

@ the /ocal attribute equations need to be evaluated using a global
algorithm that knows about the dependencies of the equations

@ in order to construct this algorithm, we need

@ aseguence in which the nodes of the tree are visited
© asequence within each node in which the equations are evaluated

@ this evaluation strategy has to be compatible with the
dependencies between attributes
e ]
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Observations

@ in order to infer an evaluation strateqy, it is not enough to
consider the /ocal attribute dependencies at each node
@ the evaluation strategy must also depend on the global
dependencies, that is, on the information flow between nodes
@ the global dependencies thus change with each new abstract
syntax tree
@ in the example, the information flows always from the children to
the parent node
~+ a depth-first post-order traversal is possible
@ in general, variable dependencies can be much more
. ——
complicated
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Simultaneous Computation of Multiple Attributes

Compute empty, first, next of regular expression:

d . emplylo] = empty[l]
- first[0] = first[1]
next(l] = 0
7 : empty[0] = (x=e
= firsto] = {x x;ée}
/f (no eqguation for next )
D,
e
o
ajo
e e [] \&Y/

Regular Expressions: Rules for Concatenation

E—E-E| :  empty[0] := empty[l] A empty[2]

' first[0] = first[1] U (empty][1] 7 first[2] : @)
next[1] = first[2] U (empty([2] ? next[0]: ¥)
nextl2] = next[0]

Dy :

3 [

Regular Expressions: Rules for Alternative

empty[1] V empty[3]
first[1] U first[g]
next[0]

next[0]

Regular Expressions: Kleene-Star and ‘?’
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F%irstm 40 v {1

first[1] U next[U]

t
first[1]
next[0]

Dy :

||?|
9

||?\

[o}=—-1>]

et (0]

15/188




Challenges for General Attribute Systems
@ assume that the grammar Gr has no useless productions
@ let T _denote all derivable syntax trees of Gr
@ an evaluation strategy can only exist if for any abstract syntax
tree r € T, the dependencies between attributes are acyclic
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Challenges for General Attribute Systems
@ assume that the grammar Gr has no useless productions
@ let 7 denote all derivable syntax trees of Gr
@ an evaluation strategy can only exist if for any abstract syntax
tree r € T, the dependencies between attributes are acyclic
Consider the 6 productions of the regular expression grammar:

i1 S—E 4 E—E-E
2 E—x 5 E—Ex
3 E—E|E 6 E—E?

|dea: Compute a directed graph D; for each production i.
o the vertices of D'; are its Ihs attributes a,[0]. .. . a, (0]

@ an edge a;[0] Tﬂﬁ)] indicates a;[0] must be evaluated so that
visiting the production can compute ;0]

@ for productions whose rhs only contains terminals D; = D;

@ compute new edges for other productions based 6n the current
edges of its rhs non-terminals (~ next slide)

@ when no new edges can be added, the graphs D’; denote the
dependencies of all possible derivation trees ~

@ no. of edges in each graph is finite «»Wanteed

16/188

Challenges for General Attribute Systems
@ assume that the grammar Gr has no useless productions
@ let 7 denote all derivable syntax trees of Gr
@ an evaluation strategy can only exist if for any abstract syntax
free 1 € T, the dependencies between atiributes are acyclic
Consider the 6 productions of the regular expression grammar:

D, 1 SoE 4 E-EE
2 E—x 5 E—Ex
3 ESEE 6 EE?
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Computing Dependencies « N -/, .- Mon v
Define D/[G,. .. G,] to be the graph obtained from D} by adding an
edge ffom a; 0] 1o (0] if there is a path from ;[0] t0 4;[0] in the
dependency graptrD; where graphs G; give the dependencies for the
corresponding rhs-attributes. Abort when cgcles exists.
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Computing Dependencies

Define D{[G,...G,] to be the graph obtained from D; by adding an
edge from «;[0] to ;[0] if there is a path from «;[0] to 4;[0] in the
dependency graph D; where graphs G; give the dependencies for the
corresponding rhs-attributes. Abort when cycles exists.

Example: D}[G,, G, Gs]: Dependency graph of Dy :

f e

| (B) 1

Suppose graph G, is empty and graphs G, and G; are as follows:

f|e f]]e
i |
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Computing Dependencies

Define D![G,,. .. G,] to be the graph obtained from D! by adding an
edge from «;[0] to 4;[0] if there is a path from «;[0] to 4;[0] in the
dependency graph D; where graphs G; give the dependencies for the
corresponding rhs-attributes. Abort when cycles exists.

Example: D}[G,. G, G3]: Dependency graph of D, :

Suppose graph G, is empty and graphs G, and G5 are as follows:

(] [¢] alE
A

Edges added to Dj:  Which edges are added for D, [G3, G, G1]?

] [e] ; sﬁl B

Computing Dependencies

Define D;[G.. .. G,] to be the graph obtained from D; by adding an
edge from 4;[0] to 4;[0] if there is a path from ;[0] to 4;[0] in the
dependency graph D; where graphs G, give the dependencies for the
corresponding rhs-attributes. Abort when cycles exists.

Example: D}[G,,G,, G3]: Dependency graph of D, :

t e

(B ¥

Suppose graph G, is empty and graphs G, and G; are as follows:

f‘e f [e
L .

Edges added to Dj:

: ﬂ 17/188

Complexity of Computing Dependencies

p rule 2 p rule D,

1 S-E 4 E-EE n[0]
2 E—x n[0] 5 E—FEx n[0]
3 E—EIE n[0] 6 E—E? n[0]

Add edges by repeatedly evaluating until stable:

Di[G1] for G, e {D),...D,}

D}[G1, Gy, G4 for G\, Gs € {D;,... D}, G; empty
D}[G1, G2, G3] for G,Gs € {D}, ... Dy}, Go empty
DG, G,] for G\ € {Dj,... D}, & empty
DG, G;] for G, € {D),...D,}, G, empty
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Complexity of Computing Dependencies

p rule D, p rule D,

1 SSE 4 ESEE n[0]
2 E-x n|0] 5 E—Ex n[0]
3 E-E|E n|0] 6 E—E? n|0]

Add edges by repeatedly evaluating until stable:

D} [G] for G, € {D5,... Dy}

Dj[Gy, G2, G4 for G\,Gs € {D4,...Dg}, G, empty
Dy [G1, G2, G4 for G1.Gs € {D3,... D¢}, G> empty
DGy, G2 for G, € {D5. ... D¢}, G, empty

D [Gy, Go] for G, € {D},... D}, G, empty

e for n attributes, there are n* possible edges
@ worst case: only one edge is added in each evaluation of_g;

@ checking that no cyclic attribute dependencies can arise is
DEXPTIME-complete [Jazayeri, Odgen, Rounds, 1975] /.
._-—-"-'_‘--‘
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Example: Checking Circularity

rue D

P ;
Grammar: 1 S—L Jjlo

2 L—a J10] « k[0]
3 L—b — Jlo] k[0]

Dependency graphs D,,:
h @

n [ (L) O

h] [0 é h‘T ém

Apply until stable:
D[G)] for G, € {D5, D}
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Example: Checking Circularity

p rule D[’)

Grammar: 1 S—L Jl0]
2 L-a Jlo]  k[0]
3 L—b o] o]

Dependency graphs D,

h [T (L h% L

Apply until stable:

D [Gy] for G, € {D},D}}

Strongly Acyclic Attribute Dependencies

Problem: with larger grammars, this algorithm is {oo_expensive
Goal: find a sufficient condition for an attribute system to be acyclic
—
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Strongly Acyclic Attribute Dependencies

Problem: with larger grammars, this algorithm is too expensive
Goal: find a sufficient condition for an attribute system to be acyclic

|dea: Compute dependency graph D., for each non-terminal s € N.
o for all productionsg — 11 ...1, With ; terminals:
Dy, = D; U...UD; where ij,...i are the productions indices

@ compute D, |G, ... G,] for each production N = s, . . .s, where G,
is the graph between a;,[0], . . . a;,[0] of s,
————g—n. -

@ re-evaluate each rule until none of the graphs change anymore

@ if a cycle is detected during the computation of D}, report “may
have cycle” -
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Example: Strong Acyclic Test
Consider again the grammar S—L, L—a | b. Dependency graphs D,,:

@n(?f
S ® i

L) (1] (1 0 (L OE

g v

@ for all productions N — #; .. .1, with ¢; terminals:
D) = D; U...UD,; where i,...i are the productions indices

@ compute D} [Gy,...G,] for each production N — s, . ..s, where G;
is the graph between a,, [0], .. .4;,[0] of 5;

W] 1]

p rule

1 S—L N D}

2 L-a S Jl0]
3 L—=bh L

— J[0] « &[0]
21/188

Example: Strong Acyclic Test
Consider again the grammar S—1, L—a | b. Dependency graphs D,

h ] (k) [ [x] (L) GI

B Vo

@ for all productions N — 1, ... t, with #; terminals:
D), = D; U...UD, where iy, ...i are the productions indices

@ compute D}[G,...G,] for each production N — s, .. .s, where G;
is the graph between «;, [0], . . . a;,[0] of s;

p rule

1 SoL N D)

2 L—a S jlo]

3 Lb L &[0 j[0] &~K[0]

Strong Acyclic and Acyclic

The grammar S—L, L—a | b has only two derivation trees which are
both acyclic:

i

| b

n

%
afx o
|,

Itis not strongly acyclic since the dependence graph for the
non-terminal L has a cycle when computing Dj:
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From Dependencies to Evaluation Strategies
Possible strategies:

From Dependencies to Evaluation Strategies
Possible strategies:
@ let the user define the evaluation order
@ automatic strategy based on the dependencies:
@ use local dependencies to determine which atiributes to compuie
- i [e]
@ suppose we require y/[1]
@ computing /1] requigs T

@ depends on an attribute in the child,
so descend

@ compute attributes in passes

@ compute a dependency graph between
attributes (no go if cyclic)

o traverse AST once for each attribute; here |
three times, once fore.f, g \l\

@ compute one attribute in each pass

(0 [e] (")
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From Dependencies to Evaluation Strategies
Possible strategies:
@ let the user define the evaluation order

From Dependencies to Evaluation Strategies
Possible strategies:
@ let the user define the evaluation order
@ automatic strategy based on the dependencies:
o use local dependencies to determine which atiribuies to compute

][]
o depends on an attribute in the child,

so descend fl[e |

@ suppose we require s[1]
@ computing s[1] requires

@ compute attributes in passes

@ compute a dependency graph between
attributes (no go if cyclic)

o traverse AST once for each attribute; here |
three times, once for e, f, W

@ compute one attribute in each pass ‘

E

© consider a fixed strategy and only allow an attribute system that
can be evaluated using this strategy
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Linear Order from Dependency Partial Order

Possible aufomatic strategies:

24188

Linear Order from Dependency Partial Order

=

Possible aufomatic strategies:

@ demand-driven evaluation
o start with the evaluation of any required attribute
o if the equation for this attribute relies on as-of-yet unevaluated
attributes, compute these recursively
@ ~ visits the nodes of the syntax tree on demand
@ (following a dependency on the parent requires a pointer to the
parent)

© evaluation in passes
@ minimize the number of visits to each node
@ organize the evaluation of the tree in passes
e for each pass, pre-compute a strategy to visit the nodes together
with a local strategy for evataation within each node type

consider example for demand-driven evaluation
M "
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Linear Order from Dependency Partial Order

Possible automatic strategies:

@ demand-driven evaluation
o start with the evaluation of any required attribute
o if the equation for this attribute relies on as-of-yet unevaluated
attributes, compute these recursively
@ -~ visits the nodes of the syntax tree on demand
e (following a dependency on the parent requires a pointer to the
parent)

© evaluation in passes
o minimize the number of visits to each node
@ organize the evaluation of the tree in passes
e for each pass, pre-compute a strategy to visit the nodes together
with a local strategy for evaluation within each node type

—
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Example for Demand-Driven Evaluation
Compute next at the leaves of a(a|b) in the expression ((a|b) a(alb)):

m : next[l] := next[0]
next2] := next[0]

-] :  next[l] := first[2] U (empty[2] 7 next[0]:0)
next2] := next[0]
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Example for Demand-Driven Evaluation
Compute next at the leaves of «(al|b) in the expression ((a|b)*a(alb)):

m : next[l] := next[0]
next2] := next[0]

[] : next[l] := first[2] U (empty[2] 7 next[0]: @)
nextl2] := next[0]

Demand-Driven Evaluation

Observations

® only required attributes are evaluated

@ the evaluation sequence de s — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated

@ the algorithm may visit nodes more often than necessary
e e e e e,

@ each node must contain a pointer to its parent

@ the algorithm is not local

—— e
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Example for Demand-Driven Evaluation
Compute next at the leaves of a{a|b) in the expression ((a|b)*a(alb)):

m : next[l] := next[0]
next2] := next[0]

-]« next[l] := first[2] U (empty[2] 7 next[0]: @)
next2] := next[0]
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Demand-Driven Evaluation

Observations

@ only required attributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary
@ each node must contain a pointer to its parent
@ the algorithm is not local
approach only beneficial in principle:
@ evaluation strategy is dynamic: difficult to debug
@ computation of all attributes is often cheaper
@ usually all attributes in all nodes are required
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Demand-Driven Evaluation

Observations
-__*_________________“_.——“

@ only required attributes are evaluated

@ the evaluation sequence depends — in general — on the actual
syntax tree

@ the algorithm must track which attributes it has already evaluated
@ the algorithm may visit nodes more often than necessary

@ each node must contain a pointer to its parent

@ the algorithm is not local

approach only beneficial in principle:
@ evaluation strategy is dynamic: difficult to debug
@ computation of all attributes is often cheaper
@ usually all attributes in all nodes are required

~ perform evaluation in passes
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Evaluation in Passes
|dea: traverse the syntax tree several times; each time, evaluate all
those equations ali,| = f(b[is], . .. z[i:]) whose arguments b[iy], . .. z[i]
are known
For a strongly acyclic attribute system:

@ the local dependencies in D; of the ith production N — s1. .. s,
together the dependencies D: for each s; define a sequence in
which attributes can be evaluated

@ determine a sequence in which the children are visited so that as
many attributes as possible are evaluated

@ in each pass at least one new atiribute is evaluated

@ requires at most n passes for evaluating » attributes

@ since a traversal strategy exists for evaluating one attribute, it
might be possible to find a strategy to evaluate more attributes -~
optimization problem

e note: evaluating attribute set {a;, [0] .. .4, [0]} for rule
N — ...N... may evaluate a different attribute set of its children
~+ up to 2¥ — 1 evaluation functions for N

...in the example:

@ empty and first can be computed together
@ next must be computed in a separate pass
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Evaluation in Passes
Idea: traverse the syntax tree several times; each time, evaluate all
those equations ali,] = f(b[is, . .. z[i;]) whose arguments b[iy], . .. z[i.]
are known
For a strongly acyclic atiribute system:

@ the local dependencies in D; of the ith production N — 51 . .. s,
together the dependencies D! for each s; define a sequence in
which attributes can be evaluated

@ determine a sequence in which the children are visited so that as
many attributes as possible are evaluated

@ in each pass at least one new attribute is evaluated

@ requires at most n passes for evaluating » attributes

@ since a traversal strategy exists for evaluating one attribute, it
might be possible to find a strategy to evaluate more attributes ~-
optimization problem

@ note: evaluating attribute set {a;[0]...a; [0]} for rule
N — ...N... may evaluate a different affribute set of its children
~+ up to 28 — 1 evaluation functions for N
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Implementing State

Problem: In many cases some sort of state is required.
Example: numbering the leafs of a syntax tree

28/188




