Script generated by TTT

Title: Simon: Compilerbau (26.05.2014)

Date: Mon May 26 14:18:10 CEST 2014

Duration: 87:37 min

Pages: 55

Semantic Analysis

Scanner and parser accept programs with correct syntax.

• not all programs that are syntactically correct make <u>sense</u>

Topic:

Semantic Analysis

2/188

Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as <u>erroneo</u>us
 - the language definition defines what erroneous means

Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables

Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - · check that identifiers are known and where they are defined
 - check the type-correct use of variables
- semantic analyses are also useful to
 - find possibilities to "optimize" the program
 - warn about possibly incorrect programs,

•

3/188

Semantic Analysis

Scanner and parser accept programs with correct syntax.

- not all programs that are syntacticallly correct make *sense*
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables
- semantic analyses are also useful to
 - find possibilities to "optimize" the program
 - warn about possibly incorrect programs

ightharpoonup a semantic analysis annotates the syntax tree with attributes

Semantic Analysis

3/188

Chapter 1:

Attribute Grammars

Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

Definition attribute grammar

An attribute grammar is a CFG extended by

- an set of attributes for each non-terminal and terminal
- local attribute equations

5/188

Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

Definition attribute grammar

An attribute grammar is a CFG extended by

- an set of attributes for each non-terminal and terminal
- local attribute equations
- in order to be able to evaluate the attribute equations, all attributes mentioned in that equation have to be evaluated already
 - → the nodes of the syntax tree need to be visited in a certain sequence

5/188

Example: Computation of the empty [r] Property

Consider the syntax tree of the regular expression (a|b)*a(a|b):

Example: Computation of the empty [r] Property

Consider the syntax tree of the regular expression $(a|b)^*a(a|b)$:

Implementation Strategy

- attach an attribute empty to every node of the syntax tree
- compute the attributes in a depth-first traversal:
 - at a leaf, we can compute the value of empty without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the empty attribute is a synthetic attribute
- it may be computed by a pref or post-order traversal

Implementation Strategy

- attach an attribute empty to every node of the syntax tree
- compute the attributes in a *depth-first* traversal:
 - at a leaf, we can compute the value of empty without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the empty attribute is a synthetic attribute
- it may be computed by a pre- or post-order traversal

in general:

Definition

7/188

An attribute is called

- synthetic if its value is always propagated upwards in the tree (in the direction leaf -> root)
- inherited if its value is always propagated downwards in the tree (in the direction root → leaf)

7/188

Attribute Equations for empty

In order to compute an attribute *locally*, we need to specify attribute equations for each node.

These equations depend on the *type* of the node:

```
for leafs: r \equiv i \mid x we define \operatorname{empty}[r] = (x \equiv \epsilon).

otherwise:

r \Rightarrow r \mid r \operatorname{empty}[r_1 \mid r_2] = \operatorname{empty}[r_1] \vee \operatorname{empty}[r_2]

\operatorname{empty}[r_1 \cdot r_2] = \operatorname{empty}[r_1] \wedge \operatorname{empty}[r_2]

\operatorname{empty}[r_1^*] = t

\operatorname{empty}[r_1^*] = t
```

Specification of General Attribute Systems

The empty attribute is <u>synthetic</u>, hence, the equations computing it can be given using <u>structural induction</u>.

Specification of General Attribute Systems

The empty attribute is *synthetic*, hence, the equations computing it can be given using *structural induction*.

In general, attribute equations combine information for children and parents.

- need a more flexible way to specify attribute equations that allows mentioning of parents and children
- use consecutive indices to refer to neighbouring attributes

```
empty[0]: the attribute of the current node \underbrace{F}_{-} the attribute of the i-th child (i > 0)
```

... in the example:

9/188

Observations

- the <u>local</u> attribute equations need to be evaluated using a <u>global</u> algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
 - a sequence in which the nodes of the tree are visited
 - a sequence within each node in which the equations are evaluated
- this *evaluation strategy* has to be compatible with the *dependencies* between attributes

10/188

11/188

Observations

- the local attribute equations need to be evaluated using a global algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
 - a sequence in which the nodes of the tree are visited
 - a sequence within each node in which the equations are evaluated
- this *evaluation strategy* has to be compatible with the *dependencies* between attributes

We illustrate dependencies between attributes using directed graph edges:

→ arrow points in the direction of information flow

Observations

- in order to infer an evaluation strategy, it is not enough to consider the *local* attribute dependencies at each node
- the evaluation strategy must also depend on the <u>global</u> dependencies, that is, on the information flow between nodes
- the global dependencies thus change with each new abstract syntax tree
- in the example, the information flows always from the children to the parent node
 - → a depth-first post-order traversal is possible
- in general, variable dependencies can be much more complicated

Simultaneous Computation of Multiple Attributes

Compute empty, first, next of regular expression:

```
1 S—E: : empty[0] := empty[1] first[0] := first[1] next[1] := \emptyset empty[0] := (x \equiv \epsilon) first[0] := \{x \mid x \neq \epsilon\} (no equation for next)
```


12/188

Regular Expressions: Rules for Alternative

13/188

15/188

Regular Expressions: Rules for Concatenation

Regular Expressions: Kleene-Star and '?'

Challenges for General Attribute Systems

- assume that the grammar Gr has no useless productions
- let \mathcal{T} denote all derivable syntax trees of Gr
- an evaluation strategy can only exist if for any abstract syntax tree $t \in \mathcal{T}$, the dependencies between attributes are acyclic

Challenges for General Attribute Systems

- assume that the grammar *Gr* has no useless productions
- ullet let ${\mathcal T}$ denote all derivable syntax trees of ${\it Gr}$
- an evaluation strategy can only exist if for *any* abstract syntax tree $t \in \mathcal{T}$, the dependencies between attributes are acyclic

Consider the 6 productions of the regular expression grammar:

$$\begin{array}{cccc}
\mathbf{D_4} & 1 & S \rightarrow E \\
2 & E \rightarrow x \\
2 & E \rightarrow E \mid E
\end{array}$$

$$\begin{array}{ccc}
4 & E \rightarrow E \cdot E \\
5 & E \rightarrow E *
\end{array}$$

3
$$E \rightarrow E \mid E$$
 6 $E \rightarrow E$?

16/188

Challenges for General Attribute Systems

- assume that the grammar Gr has no useless productions
- let \mathcal{T} denote all derivable syntax trees of Gr
- an evaluation strategy can only exist if for *any* abstract syntax tree $t \in \mathcal{T}$, the dependencies between attributes are acyclic

Consider the 6 productions of the regular expression grammar:

Idea: Compute a directed graph D'_i for each production i.

- the vertices of D'_i are its lhs attributes $a_1[0], \ldots a_n[0]$
- an edge $a_i[0] \rightarrow a_j[0]$ indicates $a_i[0]$ must be evaluated so that visiting the production can compute $a_j[0]$
- for productions whose rhs only contains terminals $D'_i = D_i$
- compute new edges for other productions based on the current edges of its rhs non-terminals (→ next slide)
- when no new edges can be added, the graphs D'_i denote the dependencies of all possible derivation trees
- no. of edges in each graph is finite ~ termination guaranteed

Computing Dependencies i N -> N -- Nn --

Define $D_i'[G_1,\ldots G_n]$ to be the graph obtained from D_i' by adding an edge from $a_i[0]$ to $a_j[0]$ if there is a path from $a_i[0]$ to $a_j[0]$ in the dependency graph D_i where graphs G_i give the dependencies for the corresponding rhs-attributes. Abort when cycles exists.

Computing Dependencies

Define $D_i'[G_1, \ldots G_n]$ to be the graph obtained from D_i' by adding an edge from $a_i[0]$ to $a_j[0]$ if there is a path from $a_i[0]$ to $a_j[0]$ in the dependency graph D_i where graphs G_i give the dependencies for the corresponding rhs-attributes. Abort when cycles exists.

Example: $D'_4[G_1, G_2, G_3]$: Dependency graph of D_4 :

Suppose graph G_2 is empty and graphs G_1 and G_3 are as follows:

17/188

Computing Dependencies

Define $\underline{D}_i'[G_1, \ldots G_n]$ to be the graph obtained from D_i' by adding an edge from $a_i[0]$ to $a_j[0]$ if there is a path from $a_i[0]$ to $a_j[0]$ in the dependency graph D_i where graphs G_i give the dependencies for the corresponding rhs-attributes. Abort when cycles exists. Example: $\underline{D}_4'[G_1, G_2, G_3]$: Dependency graph of D_4 :

Suppose graph G_2 is empty and graphs G_1 and G_3 are as follows:

Edges added to D_4' :

17/188

Computing Dependencies

Define $D_i'[G_1,\ldots G_n]$ to be the graph obtained from D_i' by adding an edge from $a_i[0]$ to $a_j[0]$ if there is a path from $a_i[0]$ to $a_j[0]$ in the dependency graph D_i where graphs G_i give the dependencies for the corresponding rhs-attributes. Abort when cycles exists.

Example: $D'_4[G_1, G_2, G_3]$: Dependency graph of D_4 :

Suppose graph G_2 is empty and graphs G_1 and G_3 are as follows:

Edges added to D_4' :

f e E n

Complexity of Computing Dependencies

Add edges by repeatedly evaluating until stable:

$$\begin{array}{ll} \underline{D}_1'[G_1] & \text{for } G_1 \in \{D_2', \dots D_6'\} \\ \underline{D}_3'[G_1, G_2, G_3] & \text{for } G_1, G_3 \in \{D_2', \dots D_6'\}, G_2 \text{ empty} \\ \underline{D}_4'[G_1, G_2, G_3] & \text{for } \overline{G}_1, \overline{G}_3 \in \{D_2', \dots D_6'\}, G_2 \text{ empty} \\ D_5'[G_1, G_2] & \text{for } \underline{G}_1 \in \{D_2', \dots D_6'\}, \underline{G}_2 \text{ empty} \\ D_6'[G_1, G_2] & \text{for } \overline{G}_1 \in \{D_2', \dots D_6'\}, G_2 \text{ empty} \end{array}$$

Complexity of Computing Dependencies

Add edges by repeatedly evaluating until stable:

$$\begin{array}{lll} D_1'[G_1] & \text{for } G_1 \in \{D_2', \dots D_6'\} \\ D_3'[G_1, G_2, G_3] & \text{for } G_1, G_3 \in \{D_2', \dots D_6'\}, G_2 \text{ empty} \\ D_4'[G_1, G_2, G_3] & \text{for } G_1, G_3 \in \{D_2', \dots D_6'\}, G_2 \text{ empty} \\ D_5'[G_1, G_2] & \text{for } G_1 \in \{D_2', \dots D_6'\}, G_2 \text{ empty} \\ D_6'[G_1, G_2] & \text{for } G_1 \in \{D_2', \dots D_6'\}, G_2 \text{ empty} \end{array}$$

- for n attributes, there are n^2 possible edges
- worst case: only one edge is added in each evaluation of D_i'
- checking that no cyclic attribute dependencies can arise is DEXPTIME-complete [Jazayeri, Odgen, Rounds, 1975]

Example: Checking Circularity

Apply until stable:

$$D_1'[G_1]$$
 for $G_1 \in \{D_2', D_3'\}$

18/188

19/188

Example: Checking Circularity

Dependency graphs D_p :

Apply until stable:

$$D'_1[G_1]$$
 for $G_1 \in \{D'_2, D'_3\}$

Strongly Acyclic Attribute Dependencies

Problem: with larger grammars, this algorithm is too expensive Goal: find a *sufficient* condition for an attribute system to be acyclic

Strongly Acyclic Attribute Dependencies

Problem: with larger grammars, this algorithm is too expensive Goal: find a sufficient condition for an attribute system to be acyclic

Idea: Compute dependency graph D'_s for each *non-terminal* $s \in N$.

- for all productions $N \to t_1 \dots t_n$ with t_i terminals: $D'_N = D_{i_1} \cup \ldots \cup D_{i_k}$ where $i_1, \ldots i_k$ are the productions indices
- compute $D'_N[G_1, \ldots G_n]$ for each production $N \to s_1 \ldots s_n$ where G_i is the graph between $a_{i_1}[0], \ldots a_{i_k}[0]$ of s_i
- re-evaluate each rule until none of the graphs change anymore
- if a cycle is detected during the computation of D'_N , report "may have cycle"

20/188

Example: Strong Acyclic Test

Consider again the grammar $\underline{S} \rightarrow L$, $L \rightarrow a \mid b$. Dependency graphs D_p :

- for all productions $N \to t_1 \dots t_n$ with t_i terminals: $D'_N = D_{i_1} \cup \ldots \cup D_{i_k}$ where $i_1, \ldots i_k$ are the productions indices
- compute $D'_N[G_1, \ldots G_n]$ for each production $N \to s_1 \ldots s_n$ where G_i is the graph between $a_{i_1}[0], \dots a_{i_k}[0]$ of s_i

$$1 S \rightarrow L$$

 $2 I \rightarrow a$

$$\begin{array}{ccc}
L \rightarrow a \\
3 & L \rightarrow b
\end{array}$$

Example: Strong Acyclic Test

Consider again the grammar $S \rightarrow L$, $L \rightarrow a \mid b$. Dependency graphs D_n :

- for all productions $N \to t_1 \dots t_n$ with t_i terminals: $D'_N = D_{i_1} \cup \ldots \cup D_{i_k}$ where $i_1, \ldots i_k$ are the productions indices
- compute $D'_N[G_1, \ldots G_n]$ for each production $N \to s_1 \ldots s_n$ where G_i is the graph between $a_{i_1}[0], \ldots a_{i_k}[0]$ of s_i

$$p$$
 rule

2 $L \rightarrow a$ 3 $L \rightarrow b$

Strong Acyclic and Acyclic

The grammar $S \rightarrow L$, $L \rightarrow a \mid b$ has only two derivation trees which are both acyclic:

It is not strongly acyclic since the dependence graph for the non-terminal L has a cycle when computing D'_s :

From Dependencies to Evaluation Strategies

Possible strategies:

From Dependencies to Evaluation Strategies

Possible strategies:

Iet the user define the evaluation order

23/188

From Dependencies to Evaluation Strategies

Possible strategies:

- let the user define the evaluation order
- automatic strategy based on the dependencies:
 - use local dependencies to determine which attributes to compute

 - computing [1] requires f[1]
 - f[] depends on an attribute in the child, so descend
 - compute attributes in passes
 - compute a dependency graph between attributes (no go if cyclic)
 - traverse AST once for each attribute; here three times, once for e,f,g
 - compute one attribute in each pass

From Dependencies to Evaluation Strategies

Possible strategies:

- let the user define the evaluation order
- automatic strategy based on the dependencies:
 - use local dependencies to determine which attributes to compute
 - suppose we require s[1]
 - computing s[1] requires f[1]
 - f[1] depends on an attribute in the child, so descend
 - compute attributes in passes
 - compute a dependency graph between attributes (no go if cyclic)
 - traverse AST once for each attribute; here three times, once for e, f, \mathfrak{N}
 - compute one attribute in each pass

23 / 188

Linear Order from Dependency Partial Order

Possible automatic strategies:

Linear Order from Dependency Partial Order

Possible *automatic* strategies:

- demand-driven evaluation
 - start with the evaluation of any required attribute
 - if the equation for this attribute relies on as-of-yet unevaluated attributes, compute these recursively
 - \sim visits the nodes of the syntax tree on demand
 - (following a dependency on the parent requires a pointer to the parent)
- evaluation in passes

24/188

- minimize the number of visits to each node
- organize the evaluation of the tree in passes
- for each pass, pre-compute a strategy to visit the nodes together with a local strategy for evaluation within each node type

24/188

Linear Order from Dependency Partial Order

Possible automatic strategies:

- demand-driven evaluation
 - start with the evaluation of any required attribute
 - if the equation for this attribute relies on as-of-yet unevaluated attributes, compute these recursively
 - visits the nodes of the syntax tree on demand
 - (following a dependency on the parent requires a pointer to the parent)
- evaluation in passes
 - minimize the number of visits to each node
 - organize the evaluation of the tree in passes
 - for each pass, pre-compute a strategy to visit the nodes together with a local strategy for evaluation within each node type

consider example for demand-driven evaluation

Example for Demand-Driven Evaluation

Compute next at the leaves of a(a|b) in the expression ((a|b)*a(a|b)):

 $\begin{array}{cccc} & : & \mathsf{next}[1] & := & \mathsf{first}[2] \cup (\mathsf{empty}[2] \,?\, \mathsf{next}[0] \!:\! \emptyset) \\ & & \mathsf{next}[2] & := & \mathsf{next}[0] \end{array}$

Example for Demand-Driven Evaluation

Compute next at the leaves of a(a|b) in the expression ((a|b)*a(a|b)):

```
 \begin{array}{ccc} & : & \mathsf{next}[1] & := & \mathsf{first}[2] \cup (\mathsf{empty}[2] \,?\, \mathsf{next}[0] \!:\! \emptyset) \\ & & \mathsf{next}[2] & := & \mathsf{next}[0] \end{array}
```


25/188

26/188

Example for Demand-Driven Evaluation

Compute next at the leaves of a(a|b) in the expression ((a|b)*a(a|b)):

$$\begin{array}{ccc} & : & \mathsf{next}[1] & := & \mathsf{first}[2] \cup (\mathsf{empty}[2] \,?\, \mathsf{next}[0] \colon \emptyset) \\ & & \mathsf{next}[2] & := & \mathsf{next}[0] \end{array}$$

25/188

Demand-Driven Evaluation

Observations

- only required attributes are evaluated
- the <u>evaluation sequence depends</u> in general on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary
- each node must contain a pointer to its parent
- the algorithm is not local

Demand-Driven Evaluation

Observations

- only required attributes are evaluated
- the evaluation sequence depends in general on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary
- each node must contain a pointer to its parent
- the algorithm is not local

approach only beneficial in principle:

- evaluation strategy is dynamic: difficult to debug
- computation of all attributes is often cheaper
- usually all attributes in all nodes are required

Demand-Driven Evaluation

Observations

- only required attributes are evaluated
- the evaluation sequence depends in general on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary
- each node must contain a pointer to its parent
- the algorithm is not local

approach only beneficial in principle:

- evaluation strategy is dynamic: difficult to debug
- computation of all attributes is often cheaper
- usually all attributes in all nodes are required

→ perform evaluation in passes

Evaluation in Passes

Idea: traverse the syntax tree several times; each time, evaluate all those equations $a[i_a] = f(b[i_b], \dots z[i_z])$ whose arguments $b[i_b], \dots z[i_z]$ are known

For a *strongly acyclic attribute system:*

- the local dependencies in D_i of the *i*th production $N \to s_1 \dots s_n$ together the dependencies D_i' for each s_i define a sequence in which attributes can be evaluated
- determine a sequence in which the children are visited so that as many attributes as possible are evaluated
- in each pass at least one new attribute is evaluated
- requires at most n passes for evaluating n attributes
- since a traversal strategy exists for evaluating one attribute, it
 might be possible to find a strategy to evaluate more attributes
 optimization problem
- note: evaluating attribute set $\{a_{i_1}[0] \dots a_{i_m}[0]\}$ for rule $N \to \dots N \dots$ may evaluate a different attribute set of its children \sim up to $2^k 1$ evaluation functions for N

27/188

Evaluation in Passes

Idea: traverse the syntax tree several times; each time, evaluate all those equations $a[i_a] = f(b[i_b], \dots z[i_z])$ whose arguments $b[i_b], \dots z[i_z]$ are known

For a strongly acyclic attribute system:

- the local dependencies in D_i of the *i*th production $N \to s_1 \dots s_n$ together the dependencies D_i' for each s_i define a sequence in which attributes can be evaluated
- determine a sequence in which the children are visited so that as many attributes as possible are evaluated
- in each pass at least one new attribute is evaluated
- ullet requires at most n passes for evaluating n attributes
- since a traversal strategy exists for evaluating one attribute, it might be possible to find a strategy to evaluate more attributes ~> optimization problem
- note: evaluating attribute set $\{a_{i_1}[0] \dots a_{i_m}[0]\}$ for rule $N \to \dots N \dots$ may evaluate a different attribute set of its children \sim up to $2^k 1$ evaluation functions for N

...in the example:

- empty and first can be computed together
- next must be computed in a separate pass

Implementing State

26/188

Problem: In many cases some sort of state is required.

Example: numbering the leafs of a syntax tree

