Script generated by TTT

Title: Simon: Programmiersprachen (05.05.2014)

Date: Mon May 05 14:23:27 CEST 2014

Duration: 84:44 min

Pages: 42

Syntactic Analysis

Token-Stream ——

Parser

—= Syntaxtree

@ Syntactic analysis tries to integrate Tokens into larger program

units.

]

60/61

Topic:

Syntactic Analysis

59/61

ltem Pushdown Automaton — Example

Our example:

S - AB ||A - a| [B = b

85/61

ltem Pushdown Automaton — Example

Our example:

ltem Pushdown Automaton — Example

QOur example:

S — AB A — a B

85/61

— b

85/61

ltem Pushdown Automaton — Example

Our example:

S —- AB A — a B

ltem Pushdown Automaton — Example

Our example:

S — AB A — a B

85/61

85/61

ltem Pushdown Automaton — Example

We add another rule| S — § | for initialising the construction:
Start state:
End state: S — S el

Transition relations:

[S"— o 5] e|[S"— o S][S— e AB|
S—.»OAB] e|S— OAB] [A—..»la}
A— ed a|lA—ael

S— eAB [A—.*a-] € S—>A|-B|
[[S—~AeB I3 S—.*AOB[B%"Ib}l
B— e b b | |[B—be
S—AeB|[B—be| | e|[S—ABae|

S o S][S—>ABe] | e|[8 S

Item Pushdown Automaton

Discussion:

@ The expansions of a computation form a leftmost derivation
@ Unfortunately, the expansions are chosen nondeterministically

@ For proving correctness of the construction, we show that for
every ltem [A—«ae B3] the following holds:

([A—=aeBj], w)F" ([A—aBef], ¢) iff

B —"w

@ LL-Parsing is based on the item pushdown automaton and tries
to make the expansions deterministic ...

B6/61

88/61

Item Pushdown Automaton

The item pushdown automaton A

Expansions: (A —~aeBf|,c,[A—>aeBfS|[B— ev]) for

A— aBB, B—~ € P
Shifts: ([A—aeaf),a,[A—>aaej]) for A—woap € P
Reduces: ([A—aeBB|[B—ve|, e, [A—aBef]) for

A—aBB, B—~y € P

ltems of the form: | [A — «a e] | are also called complete
The item pushdown automaton shifts the dot once around the
derivation tree ...

ltem Pushdown Automaton

The item pushdown automaton M~ has three kinds of transitions:

Expansions: ([A—aeBj3|,¢[A—~aeBj|[B— ev]) for
A—=>aBp, B—~ € P

Shifts: ([A—aeap),a,[A—aaej]) for A—aap € P

Reduces: ([A—aeBp|[B— e, e, [A—aBeg]) for

A—aBB, B—v € P

ltems of the form: [A — ae] are also called complete

The item pushdgwn automaton shifts the dot once around the
delivation tree

has three kinds of transitions:

87/61

87/61

Item Pushdown Automaton

Beispiel: 5—¢ |:| §5

The transitions of the according ltem Pushdown Automaton:

08— oS e ||[S"— o8] [S— e
1][S"— oS e ||[S"— o8] |S— eaSh]
278 = ealSh al[S—aeSh|
31[[S—aeSh elllS—aeSh S—'rn]

4 ||[S—>aeSh e l|[S—aeSh|[S — eaSh]
50[S—aeShl[S— e e|[S—vaSeb
6|[S—aeShl[S—aShe] | e |[S—aSeb
T1[S—>aSeb] b | [S—aSbe]

8| [S"— o8][S— e €| [S"—Se

9| [§"— e8] [S—aSbe] €| [S"—Se

Conflicts arise between the transitions (0, 1) and (3, 4), resp..

Topdown Parsing

Problem: |:| I:I

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

B89/61

90/61

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

90/ 61

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

90/61

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the
item pushdown automaton as deterministic pushdown automaton.

Idee 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and
continue computing in parallel.

Idee 2: Recursive Descent & Backtracking
Depth-first search for an appropriate solution.

Idee 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input
symbol.

Topdown Parsing

Idee:
@ Emanate from the item pushdown automaton

@ Consider the next symbol to determine the appropriate rule for
the next expansion

@ A grammar is called|LL(1) |if a unique choice is always possible

90/ 61

92/61

Structure of the L. (1)-Parser:

) 1]

Output

M

@ The parser accesses a frame of length 1 of the input;
@ it corresponds to an item pushdown automaton, essentially;
e table M contains the rule of choice.

Topdown Parsing

ldee:
@ Emanate from the item pushdown automaton

@ Consider the next symbol to determine the appropriate rule for
the next expansion

@ A grammar is called LL(1) if a unique choice is always possible

Definition:

A reduced grammar is called LL(1
if for each two distinct rules{A — «
S -7 ;’3’ with u € 7* the folfOWINg Tsvatid:

Firstl N First{o' B

Il
=

g

A — o | "Pramtd eachReriration

91/61

92/61

Topdown Parsing

Example 1:

S — if(E)SelsesS |
while (E) S |
£

E — id

is LL(1), since

First|(E) = {id}

Topdown Parsing

Example 1:

§ — if(E)SelseS§ |
while (E) S |
E;

E — id

is LL(1), since
Example 2:

First|(E) = {id}

e

if (E
if (E

while

Slelse S
S) |

Lookahead Sets

Definition:
For a set L C T* we define:

Firsti(L) = {e|eeL}u{ueT|IveT

93/61

quL}

Example: S“)E ’ S=asSh
‘ s 5

ab -—
aabb " o
aaabbb 4 a

i
!
b

Trvst, (<)
T:Ivsﬂ‘,,,CQ??

e:‘,»})

94/61

E)S |

... is not| LL(k)|for

Lookahead Sets

Definition:
Fora set L C T* we define:

Firstj(L) = {e|eeL}U{ueT|IveT :

any|k > 0.

MVEL}

O

Example:

€
ab
aabb
aaabbb

the prefixes of length 1

93/61

94/61

Lookahead Sets

Arithmetics:

First;(_) is compatible with union and concatenation:
First,(0) = 0
First,(L, U L,) = Firsti(L;) U First,(L,)
FirStl(L] : Lg) = FirStl(FirStl(L]) : FirStl(Lg))

First|(L;) @ First,(L,)

1 — concatenation

Observation:
LetL,,L, CTuU{e}withL, # 0 # L,. Then:

B Ly if _ed& L,

If all rules of & are productive, then all sets First; (A) are non-empty.

95/61

Lookahead Sets

For o € (N UT)* we are interested in the set:
Firsti(a) = Firsti({w e T* | a—"w})
Idea: Treat ¢ separately: F,

@ Letempty(X) =trueiff X —"¢.
@ Fo(Xy.. . Xn) 5 U, Fe(X:) Fempty(X;) A...A empty(X; ;)

We characterize the e-free First;-sets with an inequality system:

F.la) = {a} if 1= T
|FE(A)) FG{XJ-)l if |A—X,...X, €P,
empty(X1) A...A empty(Xj—1)

96/61

Lookahead Sets

Fora € (NUT)*" we are interested in the set:

Firsti(a) = Firsti({w e T* | a =" w})

|dea: Treat ¢ separately: F.
o Letempty(X) =trueiff X »*¢.

° Fe,n) = LE Fo(X;)|iflempty(X1) A... A empty(

Lookahead Sets

for example...
E - Hfr | T
T — * F | F
Fo— [(E) ||name|||int|

with |empty(E) = empty(7) = empty(F) = false

96/ 61

97/61

Lookahead Sets

for example...
E — E+T | T
T — TxF | F
F — (E) | name | int

with empty(E) = empty(T) = empty(F) = false

... we obtain:
SN D F.(E) Fe(E) O F.(E)
F.(E) |2 Fo(T) EAT) D F.(T)
Fe(T) |2 Fe(F) |Fe(F)] 2 {(,name,int}

97/61

Fast Computation of Lookahead Sets

0N N
Frank DeRemer ((|
< @)

& Tom Pennello

2
Proceeding:
@ Create the Variable dependency graph for the inequality system.

99/61

Fast Computation of Lookahead Sets

Observation:
@ The form of each inequality of these systems is:

x dy resp. x Jd

for variables x,yund d € D.
@ Such systems are called pure unification problems
@ Such problems can be solved in linear space/time.
for example: D = 2{@be}

(3
EEm] a b e
w_ X1 2 X0 X1 2 X3 — —-\4K
X e X2 2 x| 1_)
X3 2 {L} X3 2 X2 X3 2 X3 _ \
Y
Ok

Fast Computation of Lookahead Sets

bc¢
I
[a]
o |
SO
N

Frank DeRemer

& Tom Pennello

Proceeding:

@ Create the Variable dependency graph for the inequality system.

@ Whithin a strongly connected component (— Tarjan) all variables
have the same value

@ |s there no ingoing edge for an SCC, its value is computed via
the smallest upper bound of all values within the SCC

98/ 61

99/61

Fast Computation of Lookahead Sets

Frank DeRemer
& Tom Pennello

.~

Proceeding:

@ Create the Variable dependency graph for the inequality system.

@ Whithin a strongly connected component (— Tarjan) all variables
have the same value

@ Is there no ingoing edge for an SCC, its value is computed via
the smallest upper bound of all values within the SCC

@ In case of ingoing edges, their values are also to be considered
for the upper bound

99/ 61

Item Pushdown Automaton as LL(1)-Parser

back to the example: | s e ||| asb

The transitions in the according item P

utomaton:

0 [|[S"— o] e[S — oS][S—e

1 {|[S"— o] e [S"— o8] [S— eaSh]
21[S— eaSh] al[S—aeSh
31[S—aeSh S—aeShl[S e
i

5

p
S—aeSh e [|[S—>aeSh|[S— eaSh]

€| [S—aSeb

6|[S—>aeShl[S—~aShe] |c|[S—raSeb
T|[S—aSeb b | [S—aSbe]
€

€

S—aeSh|[S— e

8| [S"— eS| [S—e] §'— Se]
O[S eS|[S > aShel (5 Se]

Conflicts arise between transations (0, 1) or (3,4) resp..

101/61

Fast Computation of Lookahead Sets

... for our example grammar:

First, :

Q (, int, name
/TS"’\u-(4'E--x { j'_“.-(/F.
=

100/ 61

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items
and nonterminals:

Weset M[B, w| = i exactlyif (B,i) istherule B—~ and:
w € Firsty(y) @ J{First,(8) | S »; uBS}.

... forexample: S—e¢ | aSh

w € First (|)

Item Pushdown Automaton as LL(1)-Parser

back to the example: s ¢ | aSh
The transitions in the according Item Pushdown Automaton:

0[S — e|S] €| [S"— oS][S— e

1] [S"— e|S] e[S o8[S ealSh]
2015 eaSh] a | [S—vaeSh
3|[S—aeSh €| [S—aeSh[S— e

41 [S—aeSh €| [S—aeShl[S— eaSh|
50[S—aeSh[S—e] e|[S—aSeb
6|[S—aeShl[S—aShe] | e |[S—aSeb
T1[S—=aSeb b | [S—aSbhe]

8| [S"— o8][S— e €| [S"— Se]

9| [S"— o8] [S—aSbe] €| [S"— Se]

Conflicts arise between transations (0, 1) or (3.4) resp..

101/61

ltem Pushdown Automaton as LL(1)-Parser____

w € First; (| i

Inequality system for Follow:(B) = [J{Firsti(8) | " »; uB 3}
Follow,(S) 2 {e}

Follow,(B) 2 F.(X;) f A—aBX,...X, €P,
empty(X;) A ... A empty(X;_y)
Follow,(B) 2> Follow,(A) if A—aBX,...X, €P,

empty(X;) A... A empty(X,,)

103/61

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items
and nonterminals:

Weset M[B, w = i exactlyif (B.i) istherule B—~ and:
w € Firsty(y) @ U{First,(8) | ' =] uBB}.

... forexample: s e | aSh

w € First(|

ltem Pushdown Automaton as LL(1)-Parser

Forexample: S e | aSh
The transitions of the according ltem Pushdown Automaton:

0] [8— eS8 e[S — o8] [S— 9]
1[[S—+ oS e[S oS][S— eaSh]
21 [S— eaSh] al|[S—aeSh

3[[S vaesh e[[S—raeShl[S e
41[S~aeSh c|[S—>aeSh|[S— eaSh]
50[S—aeSh|[S—e] e|[S—aSeb

6| [S—>aeSh[S—aShe] | c|[S—raSeb]

T[S~ aSeb b | [S—aSbhe]

81 [S"— oS][S— o] €| [ST—=Se

9118 — eS|[S—aSbhe| e | [S"—Se

Lookahead table:

104/61

ltem Pushdown Automaton as LL(1)-Parser____

w € First(‘ |)

Inequality system for Follow:(B) = |J{Firsti(8) | " —; uBj3}

Follow;(S) 2 {e}

FO”OW[(B)) R(X,) if A—aBX,... X, €P,
empty(X;) A... A empty(X;_;)

Follow,(B) 2 Follow;(A) if A—aBX;...X, €P,
empty(X;) A ... A empty(X,)

End of presentation. Click to exit.

Topdown-Parsing

Discussion
@ A practical implementation of an LL(1)-parser via recursive
Descent is a straight-forward idea

@ However, only a subset of the deterministic contextfree
languages can be read this way.

@ Solution: Going from LL(1) to LL(k)
@ The size of the occuring sets is rapidly increasing with larger &

@ Unfortunately, even LL(k) parsers are not sufficient to accept all
deterministic contextfree languages.

@ In practical systems, this often motivates the implementation of
k= 1lonly ..

