Script generated by TTT

Title: Simon: Programmiersprachen (05.05.2014)

Date: Mon May 05 14:23:27 CEST 2014

Duration: 84:44 min

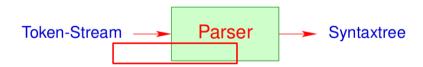
Pages: 42

Topic:

Syntactic Analysis

59/61

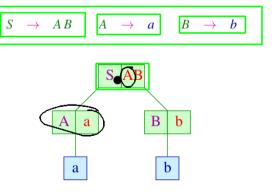
Syntactic Analysis



• Syntactic analysis tries to integrate Tokens into larger program units.

Item Pushdown Automaton – Example

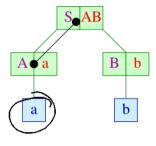
Our example:



Item Pushdown Automaton – Example

Our example:

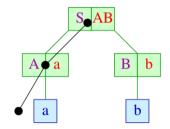
$$S \rightarrow AB \qquad A \rightarrow a \qquad B \rightarrow b$$



Item Pushdown Automaton – Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$



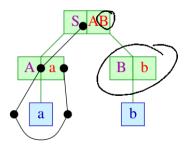
85/61

85/61

Item Pushdown Automaton – Example

Our example:

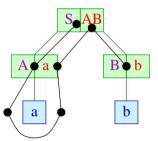
$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$



Item Pushdown Automaton – Example

Our example:

$$S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow b$$



Item Pushdown Automaton – Example

We add another rule $S' \to S$ for initialising the construction:

Start state: $[S' \rightarrow \bullet S]$ End state: $[S' \rightarrow S \bullet]$

Transition relations:

$[S' \rightarrow \bullet S]$	ϵ	$[S' \to \bullet \ S] [S \to \bullet \ A B]$
$[S \to \bullet AB]$	ϵ	$[S \to \bullet AB] [A \to \bullet a]$
$[A \rightarrow \bullet a]$	а	$[A \rightarrow a \bullet]$
$[S \rightarrow \bullet AB][A \rightarrow a \bullet]$	ϵ	$[S \rightarrow A \bullet B]$
$[S \rightarrow A \bullet B]$	ϵ	$[S \rightarrow A \bullet B] [B \rightarrow \bullet b]$
$[B \rightarrow \bullet b]$	b	[B o b ullet]
$[S \rightarrow A \bullet B] [B \rightarrow b \bullet]$	ϵ	$[S \rightarrow A B \bullet]$
$[S' \to \bullet S] [S \to A B \bullet]$	ϵ	$[S' \to S \bullet]$

Item Pushdown Automaton

Shifts:

The item pushdown automaton M_G^L has three kinds of transitions:

Expansions: $([A \rightarrow \alpha \bullet B \ \beta], \epsilon, [A \rightarrow \alpha \bullet B \ \beta] \ [B \rightarrow \bullet \ \gamma])$ for

 $A \to \alpha B \beta, B \to \gamma \in P$ $([A \to \alpha \bullet a \beta], a, [A \to \alpha a \bullet \beta])$ for $A \to \alpha a \beta \in P$

Reduces: $([A \to \alpha \bullet B \beta] [B \to \gamma \bullet], \epsilon, [A \to \alpha B \bullet \beta])$ for

 $A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P$

Items of the form: $[A \to \alpha \bullet]$ are also called complete The item pushdown automaton shifts the dot once around the derivation tree ...

86/61

87/61

Item Pushdown Automaton

Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every Item $[A \rightarrow \alpha \bullet B \beta]$ the following holds:

$$([A \to \alpha \bullet B \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon)$$
 iff $B \to^* w$

• LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...

Item Pushdown Automaton

The item pushdown automaton M_G^L has three kinds of transitions:

Expansions: $([A \rightarrow \alpha \bullet B \ \beta], \epsilon, [A \rightarrow \alpha \bullet B \ \beta] \ [B \rightarrow \bullet \ \gamma])$ for

 $A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P$

Shifts: $([A \rightarrow \alpha \bullet a \beta], a, [A \rightarrow \alpha a \bullet \beta])$ for $A \rightarrow \alpha a \beta \in P$

Reduces: $([A \rightarrow \alpha \bullet B \ \beta] \ [B \rightarrow \gamma \bullet], \epsilon, [A \rightarrow \alpha \ B \bullet \beta])$ for

 $A \to \alpha B \beta, B \to \gamma \in P$

Items of the form: $[A \to \alpha \bullet]$ are also called complete The item pushed wn automaton shifts the dot once around the delivation tree.

Item Pushdown Automaton

Beispiel: $S \rightarrow \epsilon$ | ϕ

The transitions of the according Item Pushdown Automaton:

			,
0	$[S' \rightarrow \bullet S]$	ϵ	$[S' \to \bullet S] S \to \bullet]$
1	$[S' \rightarrow \bullet S]$	ϵ	$[S' \rightarrow \bullet S] S \rightarrow \bullet a S b$
2	$[S \rightarrow \bullet aSb]$	а	$[S \rightarrow a \bullet Sb]$
3	$[S \rightarrow a \bullet Sb]$	ϵ	$[S \rightarrow a \bullet Sb] [S \rightarrow \bullet]$
4	$[S \rightarrow a \bullet Sb]$	ϵ	$[S \rightarrow a \bullet Sb] [S \rightarrow \bullet a Sb]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \rightarrow a \bullet Sb] [S \rightarrow aSb \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
7	$[S \rightarrow a S \bullet b]$	b	$[S \rightarrow a S b \bullet]$
8	$[S' \to \bullet S] [S \to \bullet]$	ϵ	$[S' \to S \bullet]$
9	$[S' \to \bullet S] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet]$

Conflicts arise between the transitions (0,1) and (3,4), resp..

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

90/61

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

90/61

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idee 1: GLL Parsing

For each conflict, we create a virtual copy of the complete stack and continue computing in parallel.

Idee 2: Recursive Descent & Backtracking

Depth-first search for an appropriate solution.

Idee 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input symbol.

90/61

Structure of the LL(1)-Parser:



- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- table M q w contains the rule of choice.

91/61

Topdown Parsing

Idee:

- Emanate from the item pushdown automaton
- Consider the next symbol to determine the appropriate rule for the next expansion
- A grammar is called LL(1) if a unique choice is always possible

Topdown Parsing

Idee:

- Emanate from the item pushdown automaton
- Consider the next symbol to determine the appropriate rule for the next expansion
- A grammar is called LL(1) if a unique choice is always possible

Definition:

A reduced grammar is called LL(1 if for each two distinct rules $A \to \alpha$, $A \to \alpha' \in \mathbb{P}^{\text{limit}}$ each derivation $S \to_L^* u A \beta$ with $u \in T^*$ the following is valid:

 $\mathsf{First}_1(\alpha\beta) \cap \mathsf{First}_1(\alpha'\beta) = \emptyset$

Topdown Parsing

Example 1:

```
S \rightarrow \text{if } (E) S \text{ else } S \mid
\text{while } (E) S \mid
E;
E \rightarrow \text{id}
is LL(1), since \text{First}_1(E) = \{\text{id}\}
```

Topdown Parsing

Example 1:

is LL(1), since $First_1(E) = \{id\}$

Example 2:

$$S \rightarrow \begin{array}{c} \text{if } (E) \\ \text{if } (E) \\ \text{s} \\ \text{while } (E) \\ S \\ \end{array} \mid E;$$
 $E \rightarrow \text{id}$

... is not LL(k) for any k > 0.

93/61

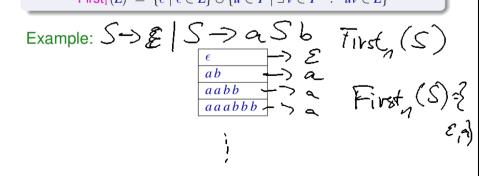
94/61

Lookahead Sets

Definition:

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \{ \epsilon \mid \epsilon \in L \} \cup \{ u \in T \mid \exists v \in T^* : \ uv \in L \}$$



Lookahead Sets

Definition:

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \{\epsilon \mid \epsilon \in L\} \cup \{u \in T \mid \exists v \in T^* : \ uv \in L\}$$

Example:

the prefixes of length 1

94/61

Lookahead Sets

Arithmetics:

First₁(_) is compatible with union and concatenation:

$$\begin{array}{lll} \mathsf{First}_1(\emptyset) & = & \emptyset \\ \mathsf{First}_1(L_1 \cup L_2) & = & \mathsf{First}_1(L_1) \cup \mathsf{First}_1(L_2) \\ \mathsf{First}_1(L_1 \cdot L_2) & = & \mathsf{First}_1(\mathsf{First}_1(L_1) \cdot \mathsf{First}_1(L_2)) \\ & := & \mathsf{First}_1(L_1) \odot \mathsf{First}_1(L_2) \end{array}$$

1 – concatenation

Observation:

Let $L_1, L_2 \subseteq T \cup \{\epsilon\}$ with $L_1 \neq \emptyset \neq L_2$. Then:

$$L_1 \odot L_2 = \left\{ \underbrace{(L_1 \setminus \{\epsilon\}) \cup L_2} \begin{array}{c} L_1 & \text{if } \epsilon \not\in L_1 \\ \text{otherwise} \end{array} \right.$$

If all rules of G are productive, then all sets $First_1(A)$ are non-empty.

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: F_{ϵ}

- Let $\operatorname{empty}(X) = \operatorname{true} \operatorname{iff} X \to^* \epsilon$.
- $F_{\epsilon}[X_1 \dots X_m] = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $empty(X_1) \wedge \dots \wedge empty(X_{j-1})$

96/61

Lookahead Sets

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: F_{ϵ}

- Let empty(X) = true iff $X \rightarrow^* \epsilon$.
- $F_{\epsilon}(X_1 ... X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $empty(X_1) \wedge ... \wedge empty(X_{j-1})$

We characterize the ϵ -free First₁-sets with an inequality system:

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

... we obtain:

$$\begin{array}{c|cccc} F_{\epsilon}(S') & \supseteq & F_{\epsilon}(E) & F_{\epsilon}(E) & \supseteq & F_{\epsilon}(E) \\ \hline F_{\epsilon}(E) & \supseteq & F_{\epsilon}(T) & \vdash & \vdash & \vdash & \vdash \\ F_{\epsilon}(T) & \supseteq & F_{\epsilon}(F) & \vdash & \vdash & \vdash \\ \hline F_{\epsilon}(F) & \supseteq & \{\,(\,\,, \text{name, int}\}\, \end{array}$$

Fast Computation of Lookahead Sets

Observation:

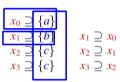
• The form of each inequality of these systems is:

$$x \supseteq y$$
 resp. $x \supseteq d$

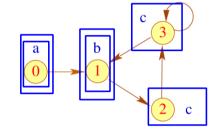
for variables x, y und $d \in D$.

- Such systems are called pure unification problems
- Such problems can be solved in linear space/time.

 $D = 2^{\{a,b,c\}}$ for example:

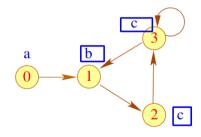


$$\begin{array}{ll}
x_1 \supseteq x_0 & x_1 \supseteq x_3 \\
x_2 \supseteq x_1
\end{array}$$



98/61

Fast Computation of Lookahead Sets



Proceeding:

• Create the Variable dependency graph for the inequality system.

Fast Computation of Lookahead Sets

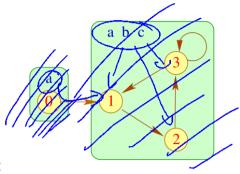
b c

Proceeding:

- Create the Variable dependency graph for the inequality system.
- Whithin a strongly connected component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC

99/61

Fast Computation of Lookahead Sets



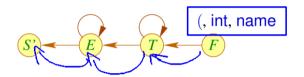
Proceeding:

- Create the Variable dependency graph for the inequality system.
- Whithin a strongly connected component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC
- In case of ingoing edges, their values are also to be considered for the upper bound

... for our example grammar:

Fast Computation of Lookahead Sets

First₁:



100/61

Item Pushdown Automaton as LL(1)-Parser

back to the example: $S \rightarrow \epsilon \mid aSb$ The transitions in the according item Pushdown Automaton:

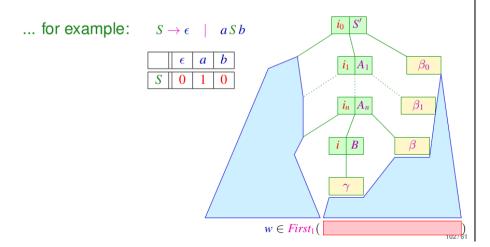
0	$[S' \to \bullet S]$	ϵ	$[S' \to \bullet S] [S \to \bullet]$
1	$[S' \rightarrow \bullet S]$	ϵ	$[S' \rightarrow \bullet S] [S \rightarrow \bullet a S b]$
2	$[S \rightarrow \bullet a S b]$	a	$[S \rightarrow a \bullet Sb]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet Sb] [S \rightarrow \bullet a Sb]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \rightarrow a \bullet Sb] [S \rightarrow aSb \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \rightarrow a S b \bullet]$
8	$[S' \to \bullet S] [S \to \bullet]$	ϵ	$[S' \to S \bullet]$
9	$[S' \rightarrow \bullet S] [S \rightarrow a S b \bullet]$	ϵ	$[S' \rightarrow S \bullet]$

Conflicts arise between transations (0, 1) or (3, 4) resp..

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

We set M[B, w] = i exactly if (B, i) is the rule $B \to \gamma$ and: $w \in \mathsf{First}_1(\gamma) \odot \bigcup \{\mathsf{First}_1(\beta) \mid S' \to_L^* uB\beta\}$.



101/61

Item Pushdown Automaton as LL(1)-Parser

back to the example: $S \rightarrow \epsilon \mid aSb$

The transitions in the according Item Pushdown Automaton:

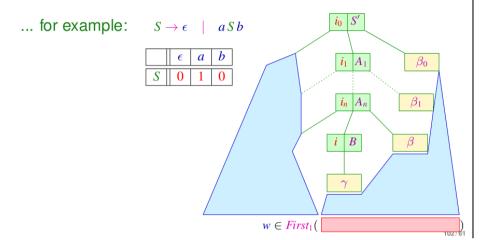
0	$[S' \rightarrow \bullet]$	ϵ	$[S' \to \bullet S] [S \to \bullet]$
1	$[S' \rightarrow \bullet]$ S	ϵ	$[S' \rightarrow \bullet S] [S \rightarrow \bullet a S b]$
2	$[S \rightarrow \bullet \overline{aSb}]$	a	$[S \rightarrow a \bullet Sb]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet Sb] [S \rightarrow \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet Sb] [S \rightarrow \bullet aSb]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \rightarrow a \bullet Sb] [S \rightarrow aSb \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \rightarrow a S b \bullet]$
8	$[S' \to \bullet S] [S \to \bullet]$	ϵ	$[S' \to S \bullet]$
9	$[S' \to \bullet S] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet]$

Conflicts arise between transations (0, 1) or (3, 4) resp..

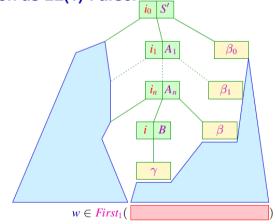
Item Pushdown Automaton as LL(1)-Parser

Is ${\it G}$ an ${\it LL}(1)$ -grammar, we can index a lookahead-table with items and nonterminals:

We set M[B, w] = i exactly if (B, i) is the rule $B \to \gamma$ and: $w \in \mathsf{First}_1(\gamma) \odot \bigcup \{\mathsf{First}_1(\beta) \mid S' \to_L^* uB\beta\}$.



Item Pushdown Automaton as LL(1)-Parser



101/61

Inequality system for $Follow_1(B) = \bigcup \{First_1(\beta) \mid S' \rightarrow_t^* u B \beta \}$

Item Pushdown Automaton as LL(1)-Parser

For example: $S \rightarrow \epsilon \mid aSb$

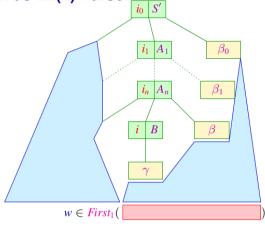
The transitions of the according Item Pushdown Automaton:

0	$[S' \rightarrow \bullet]$	ϵ	$[S' \to \bullet S] [S \to \bullet]$
1	$[S' \rightarrow \bullet S]$	ϵ	$[S' \rightarrow \bullet S] [S \rightarrow \bullet a S b]$
2	$[S \rightarrow \bullet aSb]$	a	$[S \rightarrow a \bullet Sb]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet]$
4	$[S \rightarrow a \bullet Sb]$	ϵ	$[S \rightarrow a \bullet Sb] [S \rightarrow \bullet aSb]$
5	$[S \rightarrow a \bullet Sb][S \rightarrow \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
6	$[S \rightarrow a \bullet S b] [S \rightarrow a S b \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \rightarrow a S b \bullet]$
8	$[S' \to \bullet S] [S \to \bullet]$	ϵ	$[S' \to S \bullet]$
9	$[S' \to \bullet S] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet]$

Lookahead table:

S 0 1 0

Item Pushdown Automaton as LL(1)-Parser



Inequality system for $Follow_1(B) = \bigcup \{First_1(\beta) \mid S' \to_L^* u B \beta \}$

103/61

End of presentation. Click to exit.

Topdown-Parsing

Discussion

- A practical implementation of an LL(1)-parser via recursive Descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be read this way.
- Solution: Going from LL(1) to LL(k)
- The size of the occurring sets is rapidly increasing with larger *k*
- Unfortunately, even *LL(k)* parsers are not sufficient to accept all deterministic contextfree languages.
- In practical systems, this often motivates the implementation of k = 1 only ...