# Script generated by TTT

Title: Simon: Compilerbau (28.04.2014)

Date: Mon Apr 28 15:12:39 CEST 2014

Duration: 40:49 min

Pages: 37

# further grammars:

| E             | $\rightarrow$ | E+E | <i>E</i> * <i>E</i> | (E) | name | int |
|---------------|---------------|-----|---------------------|-----|------|-----|
| $\mid E \mid$ | $\rightarrow$ | E+T | T                   |     |      |     |
| T             | $\rightarrow$ | T*F | F                   |     |      |     |
| F             | $\rightarrow$ | (E) | name                | int |      |     |

Both grammars describe the same language

# ... further examples:

#### **Further conventions:**

- For every nonterminal, we collect the right hand sides of rules and list them together.
- The *j*-th rule for A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A with A can be identified via the pair A can be identified via the pair A with A can be identified via the pair A c

65/61

# further grammars:

Both grammars describe the same language

#### **Derivation**

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps  $\alpha_0 \to \ldots \to \alpha_m$  is called derivation.

... for example: 
$$\underline{\underline{I}}$$

#### **Derivation**

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps  $\alpha_0 \to \ldots \to \alpha_m$  is called derivation.

... for example: 
$$\underline{E} \rightarrow \underline{E} + T$$

67/61

# Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps  $\alpha_0 \to \ldots \to \alpha_m$  is called derivation.

... for example: 
$$\begin{array}{ccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \end{array}$$

#### **Derivation**

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps  $\alpha_0 \to \ldots \to \alpha_m$  is called derivation.

#### **Derivation**

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps  $\alpha_0 \to \ldots \to \alpha_m$  is called derivation.

#### **Derivation**

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps  $\alpha_0 \to \ldots \to \alpha_m$  is called derivation.

#### **Definition**

A derivation  $\rightarrow$  is a relation on words over  $N \cup T$ , with

$$\alpha \to \alpha'$$
 iff  $\alpha = \alpha_1 A \alpha_2 \land \alpha' = \alpha_1 \beta \alpha_2$  for an  $A \to \beta \in P$ 

67/61

#### **Derivation**

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps  $\alpha_0 \to \ldots \to \alpha_m$  is called derivation.

#### **Definition**

A derivation  $\rightarrow$  is a relation on words over  $N \cup T$ , with

$$\alpha \to \alpha'$$
 iff  $\alpha = \alpha_1 A \alpha_2 \land \alpha' = \alpha_1 \beta \alpha_2$  for an  $A \to \beta \in P$ 

The reflexive and transitive closure of  $\rightarrow$  is denoted as:  $\rightarrow^*$ 

## **Derivation**

#### Remarks:

- ullet The relation  $\ \ o$  depends on the grammar
- In each step of a derivation, we may choose:
  - \* a spot, determining where we will rewrite.
  - \* a rule, determining how we will rewrite.
- The language, specified by *G* is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

#### **Derivation**

#### Remarks:

- The relation  $\rightarrow$  depends on the grammar
- In each step of a derivation, we may choose: a spot, determining where we will rewrite.
  - a rule, determining how we will rewrite.
- The language, specified by *G* is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

#### Attention:

The order, in which disjunct fragments are rewritten is not relevant.

68/61

# **Special Derivations**

#### Attention:

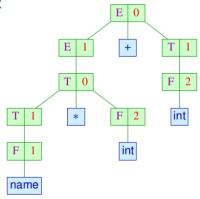
In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or rather rightmost) occurance of a nonterminal.

- These are called leftmost (or rather rightmost) derivations and are denoted with the index *L* (or *R* respectively).
- Leftmost (or rightmost) derivations correspondt to a left-to-right (or right-to-left) preorder-DFS-traversal of the derivation tree.
- Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of the derivation tree

70/61

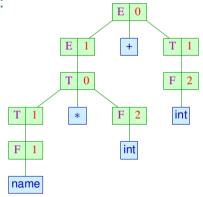
# **Special Derivations**

... for example:



# **Special Derivations**

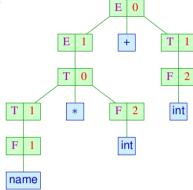
... for example:



Leftmost derivation: (E, 0) (E, 1) (T, 0) (T, 1) (F, 1) (F, 2) (T, 1) (F, 2)Rightmost derivation: (E, 0) (T, 1) (F, 2) (E, 1) (T, 0) (F, 2) (T, 1) (F, 1)

# **Special Derivations**

... for example:



Leftmost derivation: (E, 0) (E, 1) (T, 0) (T, 1) (F, 1) (F, 2) (T, 1) (F, 2)Rightmost derivation: (E, 0) (T, 1) (F, 2) (E, 1) (T, 0) (F, 2) (T, 1) (F, 1)

Reverse rightmost derivation:

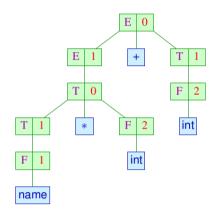
(F, 1) (T, 1) (F, 2) (T, 0) (E, 1) (F, 2) (T, 1) (E, 0)

71/61

#### **Unique grammars**

The concatenation of leaves of a derivation tree t are often called yield(t).

... for example:



gives rise to the concatenation:

name \* int + int .

72/61

# **Unique grammars**

#### **Definition:**

Grammar G is called unique, if for every  $w \in T^*$  there is maximally one derivation tree t of S with yield(t) = w.

... in our example:

| $E \rightarrow$      | $E+E^0 \mid E*E^1 \mid (E)^2 \mid \text{name}^3 \mid \text{int}^4$ |
|----------------------|--------------------------------------------------------------------|
| $E \rightarrow$      | $E+T^0$   $T^1$                                                    |
| $\mid T \rightarrow$ | $T*F^0 \mid F^1$                                                   |
| $F \rightarrow$      | $(E)^{0}$ name 1 int 2                                             |

The first one is ambiguous, the second one is unique

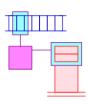
#### **Conclusion:**

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of intrerest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.
- Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
- Reverse rightmost derivations correspond to reconstruction of the syntax tree.

# Chapter 2: Basics of Pushdown Automata

#### **Basics of Pushdown Automata**

Languages, specified by context free grammars are accepted by Pushdown Automata:



The pushdown is used e.g. to verify correct nesting of braces.

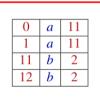
76/61

# Example:

 States:
 0, 1

 Start state:
 0

Final states: 0,2



# Example:

75/61

States: 0, 1, 2Start state: 0Final states: 0, 2

| ſ |    |   | ۱  |
|---|----|---|----|
| ı | 0  | a | 11 |
| ١ | 1  | а | 11 |
|   | 11 | b | 2  |
|   | 12 | b | 2  |

#### **Conventions:**

- We do not differentiate between pushdown symbols and states
- The rightmost / upper pushdown symbol represents the state
- Every transition consumes / modifies the upper part of the pushdown

#### **Pushdown Automata**





#### **Definition:**

A pushdown automaton (PDA) is a tuple  $M = (Q, T, \delta, q_0, F)$  with:

Q a finite set of states;

an input alphabet;

 $F \subseteq Q$  the set of final states and

 $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$  a finite set of transitions

# **Definition:**

**Pushdown Automata** 

A pushdown automaton (PDA) is a tuple  $M = (Q, T, \delta, q_0, F)$  with:

- Q a finite set of states;
- T an input alphabet;
- $q_0 \in Q$  the start state;
- $F \subseteq O$  the set of final states and
- $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$  a finite set of transitions

We define computations of pushdown automata with the help of transitions; a particular computation state (the current configuration) is a pair:

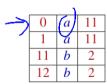
consisting of the pushdown content and the remaining input.

78/61

78/61

# ... for example:

States: 0, 1, 2Start state: 0 Final states: 0,2





# ... for example:

States: 0, 1, 2Start state: 0 Final states: 0,2

| 0   | 0/  | 11 |
|-----|-----|----|
| (1) | (a) | 11 |
| 11  | b   | 2  |
| 12  | b   | 2  |

$$(0, aaabbb) \vdash (11, aabbb)$$

# ... for example:

States: 0, 1, 2Start state: 0 Final states: 0,2

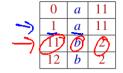
| 0  | a | 11  |
|----|---|-----|
|    | a | (1) |
| 11 | b | 2   |
| 12 | b | 2   |

$$(0, aaabbb) \vdash (11, \underline{a}abbb) \vdash (111, \underline{a}bbb)$$

## 79/61

# ... for example:

States: 0, 1, 2Start state: 0 Final states: 0,2



$$(0, aaabbb) \vdash (11, aabbb) \\ \vdash (111, abbb) \\ \vdash (111, abbb)$$

# ... for example:

States: 0, 1, 2Start state: 0 Final states: 0,2

| 0               | a   | 11  |
|-----------------|-----|-----|
| 1               | a   | 11  |
| 11              | b   | 2   |
| $\overline{12}$ | (b) | (2) |

$$(0, aaabbb) \vdash (11, aabbb) \\ \vdash (111, abbb) \\ \vdash (1111, bbb) \\ \vdash (112, bb)$$

# ... for example:

States: 0, 1, 2Start state: 0 Final states: 0,2

| 0  | a | 11 |  |  |
|----|---|----|--|--|
| 1  | a | 11 |  |  |
| 11 | b | 2  |  |  |
| 12 | b | 2  |  |  |

79/61

A computation step is characterized by the relation  $\vdash \subseteq (Q^* \times T^*)^2$  with

$$(\alpha \gamma, xw) \vdash (\alpha \gamma', w) \text{ for } (\gamma, x, \gamma') \in \delta$$

A computation step is characterized by the relation  $\vdash \subset (O^* \times T^*)^2$  with

$$(\alpha \gamma, xw) \vdash (\alpha \gamma', w)$$
 for  $(\gamma, x, \gamma') \in \delta$ 

#### Remarks:

- The relation depends of the pushdown automaton M
- The reflexive and transitive closure of ⊢ is called ⊢\*
- Then, the language, accepted by M, is

$$\mathcal{L}(M) = \{ w \in T^* \mid \exists f \in F : (q_0, w) \vdash^* (f, \epsilon) \}$$

We accept with a final state together with empty input.

A computation step is characterized by the relation  $\vdash \subseteq (Q^* \times T^*)^2$  with

$$(\alpha \gamma, xw) \vdash (\alpha \gamma', w)$$
 for  $(\gamma, x, \gamma') \in \delta$ 

#### Remarks:

- The relation  $\vdash$  depends of the pushdown automaton M
- The reflexive and transitive closure of ⊢ is called ⊢\*
- Then, the language, accepted by M, is

$$\mathcal{L}(M) = \{ w \in T^* \mid \exists f \in F : (q_0(w) \vdash^* (f, \epsilon) \} \}$$

1

#### **Deterministic Pushdown Automaton**

#### **Definition:**

The pushdown automaton  $\,M\,$  is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions  $(\gamma_1, x, \gamma_2), (\gamma_1', x', \gamma_2') \in \delta$  we can assume: Is  $\gamma_1$  a suffix of  $\gamma_1'$ , then  $x \neq x' \land x \neq \epsilon \neq x'$  is valid.

... for example:

| 0  | a | 11 |
|----|---|----|
| 1  | a | 11 |
| 11 | b | 2  |
| 12 | b | 2  |

... this obviously holds

80/61

#### **Pushdown Automata**



#### Theorem:

For each context free grammar G = (N, T, P, S)a pushdown automaton M with  $\mathcal{L}(G) = \mathcal{L}(M)$  can be built.

The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:

- $M_G^L$  to build Leftmost derivations
- M<sup>R</sup><sub>G</sub> to build reverse Rightmost derivations

Syntactic Analysis

# **Chapter 3: Top-down Parsing**