Script generated by TTT

Title: Simon: Compilerbau (28.04.2014)
Date: Mon Apr 28 15:12:39 CEST 2014
Duration: 40:49 min

Pages: 37

further grammars:

|E — E+E | ExE | (E) | name int
E — EYT | T

T — T+«F | F

F — (E) | name | int

Both grammars describe the same language

66/61

... further examples:

S — (stmt)

{stmt)y — (ify | {While}n| (rexp);

{if) — if ({rexp)) (stmt) else (sintt)

(while) — while ((rexp)) (stmt)

{rexpy — int | (lexp) | (lexp) = (rexp) |
(lexp) — name |

Further conventions:

@ For every nonterminal, we collect the right hand sides of rules
and list them together.

@ The j-thrule for A can be identified via the pair@
with j > 0).

further grammars:

|E — E+E" | ExE" | (E)? | name?® | int? |
E — E+T" | T!

T — TxF° | F!

F — (E)" | name! | int?

Both grammars describe the same language

65/ 61

66/61

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ag — ... — ay, is
called derivation.

... for example:

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ap — ... — @y, is
called derivation.

E+T

... for example: TH+T

67/61

67/61

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ag — ... — ay, iS
called derivation.

— E+T
... for example:

67/ 61

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ag — ... — a, is
called derivation.

E+T

T+T

T«F+T

Txint+ T

... for example:

Ll L

67/61

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ag — ... — ay, is
called derivation.

— E4+T
... for example: O+ T
— *@F T
— T«MmMt+7T
— F*xint+ T
67/61
Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps ap — ... — a, is
called derivation.

E+T

T+T

T«F+T

Txint+T

Fsint+ T

name * int + T

name # int + F

name = int + int

... for example:

I R R A

Definition
A derivation — is a relation on words over N U T, with

oo iff a=oAoy A o =y Ba; foran A 3P

The reflexive and transitive closure of — isdenoted as: —*

67/61

Derivation

Grammars are term rewriting systems. The rules offer feasible
rewriting steps. A sequence of such rewriting steps g — ... — @y, i
called derivation.

E+T

r+T

TxF+T

Txint+ T

Fxint+T

name xint + T

name x int + F

name = int + int

... for example:

LLLl L1y

Definition
A derivation — is a relation on words over N U T, with

!

a—ao iff a=aAday N o =0q Bay foran A — BeP

Derivation

Remarks:
@ The relation — depends on the grammar
@ In each step of a derivation, we may choose:
* a spot, determining where we will rewrite.
* arule, determining how we will rewrite.
@ The language, specifiedby G is:

LG)={weT"|S—="w}

67/ 61

68/61

Derivation

Remarks:
@ The relation — depends on the gr
@ In each step of a derivation, we may chogse:
* aspot, determining where we wiﬁjmrite.
* a rule, determining how we will rewrite.
@ The language, specified by G is:

L1
L

L(G)={weT"|S =" w}

Attention:
The order, in which disjunct fragments are rewritten is not relevant.

J

Special Derivations

... for example:

mjﬁj
[F|2]
[in]

68/61

T1/61

Special Derivations

Attention:

In contrast to arbitrary derivations, we find special ones, always
rewriting the leftmost (or rather rightmost) occurance of a
nonterminal.

@ These are called leftmost (or rather rightmost) derivations and
are denoted with the index L (or R respectively).

@ Leftmost (or rightmost) derivations correspondt to a left-to-right
(or right-to-left) preorder-DFS-traversal of the derivation tree.

@ Reverse rightmost derivations correspond to a left-to-right
postorder-DFS-traversal of the derivation tree

Special Derivations

... for example:

ws]
o

L |

1]
fﬂ [F]2]
[T]

[+] [2] int

E 1 B T
T

1 *

1

)

E:l int

name
Leftmost derivation: (E,0) (E,1) (7,0) (T, 1) (F, 1) (F,2) (T, 1) (F, 2
Rightmost derivation: (E,0) (T, 1) (F,2) (E, 1) (T,0) (F,2) (T, 1) (F,1)

70/ 61

T1/61

Special Derivations

... for example:

Leftmost derivation: (E,0)(E, 1) (T,0)(T, 1) (F,1)(F.,2) (T, 1)(F.2)
Rightmost derivation: (E.0) (T, 1) (F,2) (E, 1)(T,0) (F,2)(T,1)(F,1)
Reverse rightmost derivation:
(F, 1) (T, 1) (F,2) (T,0) (E, 1) (F,2) (T, 1) (E,0)
Unique grammars
Definition:
Grammar G is called unique, if forevery w e T* thereis
maximally one derivationtree ¢ of § with vyield(r) =w.
... in our example:
E — E+EY | ExE' | (E)> | name® | int?
E — E+T° | T
T — T«F® | F!
F — (E)Y | name! | int?

The first one is ambiguous, the second one is unique

71/61

73/61

Unique grammars

The concatenation of leaves of a derivationtree ¢ are often called

yield(r) .

... for example:
E|0

E 1 B T
T

1 #

1

T
fﬂ 7]

[+]

53]

E int

int

0
[F 1]

gives rise to the concatenation: name = int + int.

Conclusion:

@ A derivation tree represents a possible hierarchical structure of a
word.

@ For programming languages, only those grammars with a unique
structure are of intrerest.

@ Derivation trees are one-to-one corresponding with leftmost
derivations as well as (reverse) rightmaost derivations.

® Leftmost derivations correspond to @ top-down reconstruction of |
the syntax tree.

@ Reverse rightmost derivations correspond to g bottom-up
reconstruction of the syntax tree.

72/ 61

T4/61

Example:

States: 0,1,2
Start state:

Final states:

Chapter 2:
Basics of Pushdown Automata

0

a

11

a

11

11

12

75/ 61

T7/61

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by
Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

Example:
States: 0,1,2 (1) z H
Start state: 0
Final states: 0,2)b 2
i 12161 2

Conventions:
@ We do not differentiate between pushdown symbols and states
@ The rightmost / upper pushdown symbol represents the state

@ Every transition consumes / modifies the upper part of the
pushdown

76/ 61

77161

Pushdown Automata Pushdown Automata

Definition: Definition:
A pushdown automaton (PDA) is a tuple Friedrich Baver Klaus Samelson A pushdown automaton (PDA) is a tuple Friedrich Baver Klaus Samelson
M =(0,T,9, q, F) with: M = (Q,T, 0, qo, F) with:
P O afinite set of states; | @ O afinite set of states;
¢ T aninpufalphabet; | @ T an input alphabet;
qo @ gy € O the start state;
FCQ the setiffinal states and | @ F C Q0 the setof final states and
J) gl?l x|(T U ﬂ) ¥ 0*| afinite set of transitions @y CO" x (Tu{e}) x 0 afinite set of transitions

We define computations of pushdown automata with the help of
transitions; a particular computation state (the current configuration)

is a pair:
YlwphE< E .

consisting of the pushdown content and the remaining input.

78/ 61 78/ 61

.. for example: ... for example:
] 7
States: 0,1,2) (]) @ ii States: 0,1,2 ((1—))(% H
Start state: 0 = [; : Start state: 0 ot 2 5
Final states: 0,2 Final states: 0,2
121b]| 2 12|1b| 2

OD (0, aaabbb) | (1-" Labbb)

79/61 79/61

.. for example:

0

a | ll

States: 0,1,2
Start state: 0

O [« (D

Final states: 0,2

(0, aaabbb) |

(L1, gabbb)

[(111, abbb)
.. for example:
States: 0,1,2 (IJ :‘: H
Start state: 0
Final states: 0,2 1]bf2
eyole)
e
(0, aaabbb) | (11, aabbb)
[(111, abbb)
Eo(L111, bbb)
Eoo (112, bb)

79/ 61

79/61

.. for example:

States: 0,1,2 5 (1) z ii
Start state: 0 |,

Final states: 0,2 —7 D@ A

26|72

(0, aaabbb) | (11, aabbb)

f (111, abbb)
} {lbb)

.. for example:

79/61

States: 0,1,2 (1) 2 H
Start state: 0 TRN
Final states: 0,2
1216 2
(0, aaabbb) | (11, aabbb)
f (111, abbb)
Fo(LLLL, bbb)
E (112, bb)
f (12, b)

4

79/61

A computation step is characterized by the relation
C (Q* x T with

(ovy, xw) = (ay', w) fOI‘ E@

A computation §tep is characterized by the relation
C (O xT*)" with

(v, xw) = (ary/,w) for (v, x,+) €0

Remarks:

e Jhe relatim depends of the pushdown automaton M
@‘The refle and transitive closure of - is called +*
@ Then, the language, accepted by M, is

LMy ={weT"|3f€F: (q0,w)-"(f,€)}

We accept with a final state together with empty input.

80/61

80/61

A computation step is characterized by the relation
C (Q*xT")" with

(ay, xw) - (o, w) for (v, x,7) €6

Remarks:

@ The relation - depends of the pushdown automaton M
@ The reflexive and transitive closure of I is called +*
@ Then, the language, accepted by M, is

LM) = {wQT" |3fF: (qo@' “

Deterministic Pushdown Automaton

Definition:

The pushdown automaton M is deterministic, if every
configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions
! !

(v1,x,72), (7],x".75) € & we can assume:
Is 7, a suffix of], then x # x" A x # € # x" is valid.

... for example:

0]alll
1 [1
11 (5] 2
1215 2

... this obviously holds

80/61

81/61

Pushdown Automata

Theorem:

For each context free grammar G = (N, T, P,S) W Sehizenterger
a pushdown automaton M with £(G) = £(M) can be built.

A. Ottinger

The theorem is so important for us, that we take a look at two
constructions for automata, motivated by both of the special
derivations:

® ML to build [Leftmost derivations
e M2 to build|reverse Rightmost derivations

B82/61

Chapter 3:
Top-down Parsing

83/61

