Script generated by TTT

Title: Simon: Compilerbau (14.04.2014)
Date: Mon Apr 14 14:15:06 CEST 2014
Duration: 94:06 min

Pages: 59

In linear time from Regular Expressions to NFAs

Thompson’s Algorithm

Ken Thompson

Produces O(n) states for regular expressions of
length n.

28/58

Chapter 3:
Converting Regular Expressions to NFAs

Berry-Sethi Approach

Berry-Sethi Algorithm

Produces exactly n + 1 states without €-transitions cer sery A ey
and demonstrates — Equality Systems and — Attribute Grammars

Idea:

The automaton tracks (conceptionally via a marker “¢”), in the syntax
tree of a regular expression, which subexpressions in ¢ are reachable
consuming the rest of input w.

27/59

29/59

Berry-Sethi Approach

... for example:

(alb) ala|b)

Berry-Sethi Approach

... for example:

w = bbaa
-

30/59

30/58

Berry-Sethi Approach

... for example:

w = bbaa

Berry-Sethi Approach

... for example:

w = bbaa

30/59

30/59

Berry-Sethi Approach

... for example:
w = baa
rd

Berry-Sethi Approach

... for example:

30/59

30/58

Berry-Sethi Approach

... for example:
w = dd
e ——

Berry-Sethi Approach

... for example:

30/59

30/59

Berry-Sethi Approach

... for example:

Berry-Sethi Approach

In general:

@ Input is only consumed by the leaves.

@ Navigation in the tree is done without consuming input, i.e. via
e-transition.

@ For a formal construction we need identifiers for states.

@ Therefore we use the subexpression, corresponding to the
subtree, dominated by the particular node.

@ There are possibly identical subexpressions in one regular
expression.

= we enumerate the leaves ...

30/59

31/58

Berry-Sethi Approach

... for example:

w =

Berry-Sethi Approach

... for example:

W =

30/59

30/59

Berry-Sethi Approach

In general:

@ Input is only consumed by the leaves.

@ Navigation in the tree is done without consuming input, i.e. via
e-transition.

@ For a formal construction we need identifiers for states.

@ Therefore we use the subexpression, corresponding to the
subtree, dominated by the particular node.

@ There are possibly identical subexpressions in one regular
expression.

_ we enumerate the leaves ...

Berry-Sethi Approach

... for example:

31/59

32/58

Berry-Sethi Approach

... for example:

Construction (naive version):

States:
Start state:
Final state:

Transitions
The leftover

with

or, re
eg,
ce;

: forleaves r =

transitions are:

r

Transitions

P’1|f’2

{.i’, € .ﬁ)
{.i’, € .'rZ)
{rl.‘, € }’.)
{i’g., € f’.)

Fy-r

(or, €, 0r7)
{rl.‘, € .i"_))
{-"2., € f’.)

Berry-Sethi Approach (naive version)

r nodes of ¢

1Bl
(=10

| we require: rel

Transitions

r

(er, € re)

{'I’, €, .rl)
{rl.;fﬁ .rl)
{rl.:ﬁ: f’.)

F’l“.

(or, €, reo)
{'I’, €, .rl}
{rl.z €, f’.)

32/59

33/59

Berry-Sethi Approach

.. for example:

Berry-Sethi Approach

Discussion:
@ Most transitions navigate through the expression
@ The resulting automaton is in general nondeterministic

32/59

34/58

Construction (naive version):

States:
Start state:
Final state:

Transitions:

The leftover transitions are:

er, re With
oe;

ce;

r

nodes of

Berry-Sethi Approach (naive version)

e,

for leaves r = we require: (er, x, re).

r

Transitions

I’1|}’3

(or €, on)

ry-rn

(rlo €, 017)
(rye. €, 1o

2)
)
(1’7. €, rO)
)
)

Berry-Sethi Approach

Discussion:

@ Most transitions navigate through the expression

Transitions

ry

(or,6,79)

{.F'.’ €, .}’1)
(I’[O,Q .H)
(rl.‘,f: I’.)

rﬁ.

(or, 6, 7%)
(.F', €, .}’1)
{rl.: €, f’.)

@ The resulting automaton is in general nondeterministic

- Strategy for the|sophisticated version:
Avoid generating e-transitions

33/59

34/59

Berry-Sethi Approach

Discussion:
@ Most transitions navigate through the expression
@ The resulting automaton is in general nondeterministic

= Strategy for the sophisticated version:
Avoid generating e-transitions
Necessary node-attributes:
empty |can the subexpression » consume ¢ ?
he set of read states below r, which may be reached first,
when descending into r.
next |the set of read states on the right of », which may may be
reached first in the traversal after r.

last| the set of read states below r, which may be reached last
when descending into r.

34/59

Berry-Sethi Approach: 1st step

empty[r] =+ ifandonlyif €€ [/]

... for example:

35/58

Berry-Sethi Approach

Discussion:
@ Most transitions navigate through the expression
@ The resulting automaton is in general nondeterministic

= Strategy for the sophisticated version:
Avoid generating e-transitions

Necessary node-attributes:

empty can the subexpression » consume e ?

first the set of read states below r, which may be reached first,
when descending into r.

next the set of read states on the right of », which may may be
reached first in the traversal after r.

last the set of read states below r, which may be reached last
when descending into r.

Idea:
Pre-compute the attributes during D(epth)F(irst)S(earch)!

4 34/59

Berry-Sethi Approach: 1st step

empty[r] =+ ifandonlyif €€ [7]

... for example:

35/59

Berry-Sethi Approach: 1st step Berry-Sethi Approach: 1st step

empty[r] = ifand onlyif € [r] empty[r] =1 ifandonlyif €€ [r]

... for example: ... for example:

35/59 35/59

Berry-Sethi Approach: 1st step Berry-Sethi Approach: 2nd step

empty[r] =+ ifandonlyif €€ [/]

Implementation:
... for example: /\ DFS post-order traversal J

for leaves r = we find empty[r] = (x=e¢).

Otherwise:
empty[r; |] = empty[r]Vempty[r]
empty[r, - r)] = empty[r] A empty[r]
empty|r}] =

empty(r?] t

35/58 36/59

Berry-Sethi Approach: 1st step
ifand only if ¢ € [/]

empty[r] =t

... for example:

Berry-Sethi Approach: 2nd step

The may-set of|first reached read state:| The set of read states, that
may be reached from e (i.e. while descending into r) via sequences
of e-transitions: firstfr] = {iinr | (er,e, o i x]) €%, x # €}

... for example:

35/59

37/58

Berry-Sethi Approach: 2nd step

Implementation:
DFS post-order traversal

forleaves r = we find empty[r] = (x=¢).
Otherwise:
empty[r | n] = empty[r]V empty[r)]
empty[r - r)] = empty[r] A empty[r]
emoty[r}] =t
empty[r 7] =

Berry-Sethi Approach: 2nd step

The may-set of first reached read state: The set of read states, that
may be reached from er (i.e. while descending into r) via sequences
of e-transitions: firstlr] = {iinr | (er,e, o] x]) € 0", x # €}

... for example:

36/59

37/59

Berry-Sethi Approach: 2nd step

The may-set of first reached read state: The set of read states, that
may be reached from er (i.e. while descending into r) via sequences
of e-transitions: firstfr] = {iinr| (er,e, o[i[x]) €0, x # €}

... for example:

Berry-Sethi Approach: 2nd step

The may-set of first reached read state: The set of read states, that
may be reached from e (i.e. while descending into r) via sequences
of e-transitions: firstfr] = {iinr | (er,e, o i x]) €%, x # €}

... for example:
012
f
01 2
t f
* 2
01 f T

o1+ P

37/59

37/58

Berry-Sethi Approach: 2nd step

The may-set of first reached read state: The set of read states, that
may be reached from e~ (i.e. while descending into r) via sequences
firstlr] ={iinr| (er,e, o i]x]) € 0", x # €}

01T
f

of e-transitions:
... for example:

Berry-Sethi Approach: 3rd step

The may-set of nextread states: The set of read states within the
subtrees right hat may be reached next via sequences of
e-transitions. next[r] = {i | (re, ¢, o[[x]) € 6*,x # €}

... for exampie: 012 &
f

01

t

37/59

39/59

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the
subtrees right of re, that may be reached next via sequences of
e-transitions. nextfr] = {i | (re,e, o i[x]) € 0", x #€}

.. for exampie: 012

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the
subtrees right of re, that may be reached next via sequences of
e-transitions. next[r] = {i | (re, e, o[x])) € 6", x # ¢}

.. for exampie: 012

39/59

39/58

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the
subtrees right of re, that may be reached next via sequences of

next[r] = {i | (re,e, o 1<) € 6%, x # €}
... for exampie: 012

e-transitions.

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states within the
subtrees right of re, that may be reached next via sequences of
e-transitions. next[r] = {i | (re, ¢, o[[x]) € 6%, x # €}

... for exampie: 012

39/59

39/59

Berry-Sethi Approach: 4th step

The may-set of last reached read states: The set of read states, which
may be reached last during the traversal of r connected to the root via
e-transitions only: last[r] = {iinr | ((F]xJe, e, re) € 6", x # €}

... for exampie: 012/l
/

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version): Create an automanton
based on the syntax tree’s new attributes:

States: {ec} U {ie | i aleaf}
Start state: ec
Final states: last[e] if emptyle] = f
{_oe} U |aS'[[e] otherwise

Transitions: (ee,a,ie) ifi € first%and i labled with a.

if i nexti]| and 7" |abled with a.

We call the resulting automaton A,.

41/59

43/58

Berry-Sethi Approach: 4th step

The may-set of last reached read states: The set of read states, which
may be reached last during the traversal of » connected to the root via
e-transitions only: last[r] = {iinr | ((FTxJe.e,re) € 6", x # €}

... for exampie: 012

41/59

Berry-Sethi Approach

... for example:
') a
N~ R
a ,/{l’**(—)-/l\‘-\.. i(ti/fl’l
A """b \ . a
7 |a [\,'2'\\//
b\ ', I|)__7_/ \\b
™ . al A
b ™ / N .
N A
(1) (4))
~—\ N
b
Remarks:

@ Thi nstruction is known ag Berry-Sethi- pr
Glushkov-ponstruction.

@ Itis used for XML to define Content Models

@ The result may not be, what we had in mind...

44/59

Powerset Construction

... for example:

Chapter 4:
Turning NFAs deterministic

I/i-\l
//{_)/l
45/59 47/59
Powerset Construction Powerset Construction
O ¢
o (3) Yoy ’ (3)
a //j@"\ a ’I(&_ ://‘I'.I . a //r\ \ a é(%_ _//
... for example: e W a " ... for example: e AN a
'/7\{'./4 a II‘ I‘I\ 2 N "/4 |‘/7 '(\ a \II I‘I \/ 2 \./
L | b P =)
A \ a7 N S~ o\ al S “
N - ~. A/ -
b Qﬁ/i - b \‘u’i/l “
| 3] [1
s oA e _//
70) 0y
b N
8/
S =
/\\ /l_,oﬁ
a_” a.”
7 a ///
L L a
- \b : B\\\
\\/" Y
(1)
-_J@ D
47/589 b&- J

47159

Powerset Construction

... for example:

Powerset Construction

Bummer!
There are exponentially many powersets of O

@ |dea: Consider only contributing powersets. Starting with the set
Op ={I} we only add further states by need

@ i.e., whenever we can reach them from a state in Op

@ Even though, the resulting automaton can become enormously
~.. wnich is (sort of) not happening in practice

47/59

49/58

Powerset Construction

Theorem:

For every non-deterministic automaton A = (Q.X. 4,1, F) we can
compute a deterministic automaton P(A) with

Construction:

States: Powersets of 0©;
Start state: /;
Final states: {Q' C Q| O'NF # 0};

Transitions:a) =fge0 0 (p=a,

48/ 59

Powerset Construction

Bummer!
There are exponentially many powersets of O

@ Idea: Consider only contributing powersets. Starting with the set
Op = {I} we only add further states by need

@ i.e., whenever we can reach them from a state in Op

@ Even though, the resulting automaton can become enormously
huge
... which is (sort of) not happening in practice

@ Therefore, in tools likg grep f regular expression’'s DFA is never
created!

@ Instead, only the sets, directly necessary for interpreting the
input are generated while processing the input

49/59

Powerset Construction

... for example:
a/blal|b

N

()
e

50/59

Powerset Construction

... for example:

[
(-3
.

(7

50/58

Powerset Construction

... for example: Dl S . a
“Tbla | N

L)
N

Remarks:

@ For an input sequence of length » , maximally O(n) sets

are generated

@ Once a set/edge of the DFA is generated, they are stored within
a hash-table.

@ Before generating a new transition, we check this table for
already existing edges with the desired label.

50/ 59

51/59

