Script generated by TTT

Title: Simon: Compilerbau (07.04.2014)
Date: Mon Apr 07 14:17:39 CEST 2014
Duration: 91:00 min

Pages: 42

Organizing

@ Master or Bachelor in the 6th Semester with 5 ECTS
@ Prerequisites

@ Informatik 1 & 2

@ Theoretische Informatik

@ Technische Informatik

@ Grundlegende Algorithmen
@ Delve deeper with

@ Virtual Machines

@ Programmoptimization

@ Programming Languages

@ Praktikum Compilerbau

@ Hauptseminars

Materials:

@ [TTT-based lecture recordings
o theslides
@ Related literature list online
@ Tools for visualization of virtual machines
@ Tools for generating components of Compilers

59

?aag TECHNISCHE UNIVERSITAT MUNCHEN m
gg%é FAKULTAT FUR INFORMATIK
Compiler Construction |
Dr. Michael Petter, Dr. Axel Simon
SoSe 2014
Organizing
Dates:

Lecture: Mo. 14:15-15:45
Tutorial: You can vote on two dates via moodle

Exam:
@ One Exam in the summer, none in the winter
@ Exam managed via TUM-online
@ Successful (50% credits) tutorial exercises earns 0.3 bonus

Preliminary content

Basics in regular expressions and automata

Specification and implementation of scanners

Reduced context free grammars and pushdown automata
Bottom-Up Syntaxanalysis

Attribute systems

Typechecking

@ Codegeneration for stack machines

@ Register assignment

@ Basic Optimization

Interpreter

Program

[Interpreter J Output

59

Pro:

No precomputation on program text necessary
= no/small Startup-time

Con:

Program components are analyzed multiple times during the
execution
= longer runtime

159

Topic:

Introduction

Concept of a Compiler:

[Compiler]

Code |

Code

Input

[Machine J

Qutput

Tw

@/ Translating the

rogram text into a machine

code

Executing the machine code on the input

Compiler

A precomputation on the program allows
@ a more sophisticated variable management
@ discovery and implementation of global optimizations

Disadvantage
The Translation costs time

Advantage

The execution of the program becomes more efficient
= payoff for more sophisticated or multiply running programs.

Compiler

general Compiler setup:

Program code

L] il

Analysis

nt. Representation

Compiler
J9Idwon

Synthesis

s

Code

/59

159

Compiler

general Compiler setup:

Programcode
5 Analysis
CE1| nt. Representatior
o .
O Synthesis

u

Compiler

The Analysis-Phase is divided in several parts:

4

Scanner lexicographic Analysis:
Partitioning in tokens

Analysis

(annotated) Syntax tree

JB|!C|TUOO

/59

Compiler Compiler

The Analysis-Phase is divided in several parts: The Analysis-Phase is divided in several parts:
Program code Program code
Scanner lexicographic Analysis: Scanner lexicographic Analysis:
Partitioning in tokens Partitioning in tokens

R Token-Stream | R Token-Stream
w 2]
= Parser syntactic Analysis: = Parser syntactic Analysis:
g Detecting hierarchical structure g Detecting hierarchical structure
< Syntax tree < Syntax tree

Type semantic Analysis:

CheCke r.. |nfering

semantic Properties
(annotated) Syntax tree (annotated) Syntax tree
9/59 9/59

The lexical Analysis

Topic: Program code |—= Scanner Token-Stream

Lexical Analysis

10/59 11/59

The lexical

Analysis

Xyz

The lexical

Xyz

@ A Token is a sequence of characters, which together form a unit.
@ Tokens are subsumed in classes. For example:

Names (ldentifiers) e.g. =yz, pi, ...

Constants e.g. 42, 3.14, "abc”, ...

_)

%
—
%

+42 — Scanner
Analysis
+42 —>| Scanner

Xyz 42
I C
Xyz 42

Operators e.g. +, ...

reserved terms e.g.

if, int, ...

11/59

11/59

The lexical Analysis

Xyz i 42 R

Scanner

e[+]2

@ A Tokenis & sequence of characters

which together form a unit.

@ Tokens are subsumed in classes. For example:

— | Names (Identifiers)|e a !<yz, pi,l...

Constants e.g. |£l 3.14}|"abc”] ...

L4l

| reserved terms e.g.

The lexical Analysis

Operators e.g.| +, ...

if)int,]...

Classified tokens allow for further pre-processing:

@ Dropping irrelevant fragments e.g. Spacing, Comments,...

ol Separating Pragmasl i.e. directives vor the compiler, which are
not directly part of the program, like include-Statements;

@ Replacing of Tokens of particular classes with their meaning /
internal representation, e.g.

— Constants;

— Names: typically managed centrally in a Symbol-table, evt.
compared to reserved terms (if not already done by the
scanner) and possibly replaced with an index.

11/59

— Siever

12/59

The lexical Analysis

Discussion:

@ Scanner and Siever are often combined into a single component,
mostly by providing appropriate callback actions in the event that
the scanner detects a token.

@ Scanners are mostly not written manually, but generated from a

specification.

Specification Generator Scanner
‘_C(ﬁ.fo “:\1%
— Cﬁ.‘f&)’uﬂl Code.

The lexical Analysis - Generating:

Advantages
Productivity The component can be produced more rapidly

Correctness The component implements (provably) the
specification.

Efficiency The generator can provide the produced component
with very efficient algorithms.

Disadvantages
@ Specification is just another form of programming — admittedly
possibly simpler
@ Generation instead of implementatation pays off for

Routine-tasks only
... and is only good for problems, that are well understood

13/59

14/59

The lexical Analysis - Generating:

Advantages

Productivity| The component can be produced more rapidly
The component implements (provably) the

specification.

Efficiency | The generator can provide the produced component
with very efficient algorithms.

14/59

The lexical Analysis - Generating:

.. in our case:

Specification Generator

Scanner

15/59

The lexical Analysis - Generating:

... in our case:

[J©
Generator u-m&

[0-9]

y

01[1-9][0-9]*

Specification of Token-classes: Regular expressions;
Generated Implementation: Finite automata + X

15/59

Regular expressions
Basics
@ Program code is composed from a finite alphabet | ¥ | of input
characters, e.g. Unicode
@ The sets of textfragments of a token class is in general regular.

@ Regular languages can be specified by regular expressions.

17/59

Chapter 1:
Basics: Regular Expressions

Regular expressions

Basics

@ Program code is composed from a finite alphabet
characters, e.g. Unicode

@ The sets of textfragments of a token class is in general regular.
@ Regular languages can be specified by regular expressions.

3 of input

Definition Regular expressions

The set &y, of (non-empty) regular expressions
is the smallest set & with:

o £ (e anew symbol not from);

olale & forall a e

(] (‘ ,(€1D€2),€1€5 if €1,€) € E.

Stephen Kleene

16/59

17/59

Regular expressions

... Example:

((a-b")
(a|b)

a)

((a-b)(a-b))

Regular expressions

0 0[]

Specifications need Semantics

...Example:
Specification Semantics
abab {abab}
alb {a,b}
ab*a {ab"a | n > 0}

For ec & we define the specified language

inductively by:

[] = {g

[[aﬂ = {({}

le*] = ([e])*
ledes] = [er] U [e]
[er-es]| = El

18/59

[e] € =

19/59

Regular expressions

... Example:
((a-b")a)
(a|b)
((a-b)(a-b))
Attention:
@ We distinguish between characters «,0, §,... and Meta-symbols
(: |:)!

@ To avoid (ugly) parantheses, we make use of
Operator-Precedences:

®

> > |
and omit “.”
@ Real Specification-languages offer additional constructs:
[gl =
e =|(e-e")
and omit “¢”

Keep in mind:

@ The operators (_)*,U,- are interpreted in the context of sets

of words:
(L)* = {wl...w;,\kzqw;'EL}ll

Li-Ly, = {wiwy|w €Li,w, €Ly}

18/59

20/59

Keep in mind:

@ The operators
of words:

{_)*: u, -

are interpreted in the context of sets

=
L L, =

{wi...owg |k=>0,w; €L}
{wiwz | wy € Li,wy € Ly}

@ Regular expressions are internally represented as annotated
ranked trees:

Inner nodes: Operator-applications;
Leaves: particular symbols or e.

Regular expressions

Example: Identifiers in Java:

le = [a-zA-Z \$]
di =

[0-9]
I1d = {le} |)@

20/59

21/58

Regular expressions

Example: Identifiers in Java:
le = [a—-zA-7_\$]

di = [0-9]

Id = {le} ({le} | {di})=*

O

&
O O

XD

21/59

Regular expressions

Example: Identifiers in Java:
le = [a-zA-Z_\S]

di = [0-9]

Id = {le} ({le} | {di}) =«

Float = (\.{di}l{di}\.) ((e\E) SISO EHER

%

21/59

Regular expressions

Example: Identifiers

le = [a—-zA-Z_\§]
di [0-9]
Id = {le}

({le} |

(\. o

Float = {di}«

Remarks:

@ “le” and “di”
@ Defined Nal
@ Symbols ar

Finite automata

Definition

A non-deterministic finite automaton

(NFA) is a tuple A = (O,

cQ
co

S MR

in Java:

{di}) «

di}[{dit\.) {di}x((elB) (\+[\-)2{di}+)?

classes.

Meta-symbols via “\".

21/59

S
Dana Scott

[
Michael Rabin

¥, 4,1, F) with:

a finite set of states;

a finite alphabet of inputs;

the set of start states;

the set of final states and

the set of transitions (-relation)

For an NFA, we reckon:

Definition

Given § : O x © — Q a function anhen we call A J

deterministic (DFA).

24/58

Finite automata

Definition
i eterministic finite automaton
(NFA) is atuple A = (O, ¥, 4. I, F) with:

SEN
Dana Scott

U
Michael Rabin

0 a finite set of states;
% a finite alphabet of inputs;
@ O the set of start states:;
co

C the set of final states and

) the set of transitions (-relation)

24/59

Finite automata

e {Computations are paths in the graph.
@ Accepting computations lead from [to F.

@ Ancccepted word'is the sequence of lables along an accepting
computatien—

25/59

Finite automata

@ Computations are paths in the graph.
@ Accepting computations lead from [to F.

@ An accepted word is the sequence of lables along an accepting
computation ...

25/59

In linear time from Regular Expressions to NFAs

~ &8s

Thompson’s Algorithm

Produces O(n) states for regular expressions of Seienson
length n.

28/58

Chapter 3:
Converting Regular Expressions to NFAs

27/59

