Games in Strategic Form & Nash Equilibrium

- New example:
 - Player 1: M not dominated by U and M not dominated by D
 - But: If Player 1 plays \(\sigma_1 = \{1/2, 0, 1/2\} \) he will get \(u(\sigma_1) = 1/2 \) regardless how player 2 plays
 - \(\Rightarrow \) a pure strategy may be dominated by a mixed strategy even if it is not strictly dominated by any pure strategy

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>2, 0</td>
</tr>
<tr>
<td>M</td>
<td>0, 0</td>
</tr>
<tr>
<td>D</td>
<td>-1, 0</td>
</tr>
</tbody>
</table>

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - \(s_j \in S_i; \) “other player’s strategies”
 - Short notation: \((s_1, s_2, \ldots, s_i, s_{i+1}, \ldots, s_{n}) \)
 - Same for mixed strategies: \((\sigma_1, \sigma_2, \ldots, \sigma_{i-1}, \sigma_i, \sigma_{i+1}, \ldots, \sigma_n) \)

Definition:

- Pure strategy \(s_i \) is strictly dominated for player i if \(\sigma'_i \) exists so that \(u(\sigma'_i, s_j) > u(s_i, s_j) \) for all \(s_j \in S_i \)
 - ... weakly dominated:
 - \(u(\sigma'_i, s_j) \geq u(s_i, s_j) \) for all \(s_j \in S_i \) (and > for at least one \(s_j \))
 - If \(u(\sigma'_i, s_j) > u(s_i, s_j) \) for all \(s_j \in S_i \) we also have \(u(\sigma'_i, \sigma''_j) > u(s_i, \sigma''_j) \) for all \(\sigma''_j \in S_i \) because \(u(\sigma'_i, \sigma_{i+1} \ldots) \) is a convex function of \(u(\sigma'_i, s_{i+1}), u(\sigma'_i, s'_{i+1}), u(\sigma'_i, s''_{i+1}), \ldots \).
More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$: "other player’s strategies”

- Short notation: $(s'_i, s_i) = (s_1, ..., s_i - 1, s'_i, s_{i+1}, ..., s_n)$

- Same for mixed strategies: $(\alpha'_i, \alpha_i) = (\alpha_1, ..., \alpha_i - 1, \alpha'_i, \alpha_{i+1}, ..., \alpha_n)$

Definition:

- Pure strategy s_i is strictly dominated for player i if σ'_i exists so that $u_i(\sigma'_i, s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$

- ... weakly dominated:
 - $u_i(\sigma'_i, s_i) \geq u_i(s_i, s_i)$ for all $s_i \in S_i$ (and > for at least one s_i)

- If $u_i(\sigma'_i, s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$ we also have
 - $u_i(\sigma'_i, s_i) > u_i(s_i, \sigma_i)$ for all $\sigma_i \in S_i$ because
 - $u_i(\sigma'_i, \sigma_i)$ is a convex function of $u_i(\sigma'_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma'_i, s''_i), ..., u_i(\sigma'_i, s''''_i)$, ...

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$: "other player’s strategies”

- Short notation: $(s'_i, s_i) = (s_1, ..., s_i - 1, s'_i, s_{i+1}, ..., s_n)$

- Same for mixed strategies: $(\alpha'_i, \alpha_i) = (\alpha_1, ..., \alpha_i - 1, \alpha'_i, \alpha_{i+1}, ..., \alpha_n)$

Definition:

- Pure strategy s_i is strictly dominated for player i if σ'_i exists so that $u_i(\sigma'_i, s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$

- ... weakly dominated:
 - $u_i(\sigma'_i, s_i) \geq u_i(s_i, s_i)$ for all $s_i \in S_i$ (and > for at least one s_i)

- If $u_i(\sigma'_i, s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$ we also have
 - $u_i(\sigma'_i, s_i) > u_i(s_i, \sigma_i)$ for all $\sigma_i \in S_i$ because
 - $u_i(\sigma'_i, \sigma_i)$ is a convex function of $u_i(\sigma'_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma'_i, s''_i), ..., u_i(\sigma'_i, s''''_i)$, ...

Games in Strategic Form & Nash Equilibrium
Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:

 \(s_i \in S_i \): “other player’s strategies”

- Short notation: \((s'_i, s_i) := (s_1, \ldots, s_{i-1}, s'_i, s_{i+1}, \ldots, s_n)\)

- Same for mixed strategies: \((\sigma'_i, \sigma_i) := (\sigma_1, \ldots, \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, \ldots, \sigma_n)\)

Definition:

- Pure strategy \(s_i \) is strictly dominated for player i if \(\sigma'_i \) exists so that \(u_i(\sigma'_i, s_i) > u_i(s_i, s_i) \) for all \(s_i \in S_i \)

- ... weakly dominated:

 \(u_i(\sigma'_i, s_i) \geq u_i(s_i, s_i) \) for all \(s_i \in S_i \) (and > for at least one \(s_i \))

- If \(u_i(\sigma'_i, s_i) > u_i(s_i, s_i) \) for all \(s_i \in S_i \) we also have \(u_i(\sigma'_i, s_i) > u_i(\sigma_i, s_i) \) for all \(\sigma_i \in S_i \) because

 \(u_i(\sigma'_i, \sigma_i) \) is a convex function of \(u_i(\sigma'_i, s_i), u_i(\sigma_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma_i, s'_i) \),

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:

 \(s_i \in S_i \): “other player’s strategies”

- Short notation: \((s'_i, s_i) := (s_1, \ldots, s_{i-1}, s'_i, s_{i+1}, \ldots, s_n)\)

- Same for mixed strategies: \((\sigma'_i, \sigma_i) := (\sigma_1, \ldots, \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, \ldots, \sigma_n)\)

Definition:

- Pure strategy \(s_i \) is strictly dominated for player i if \(\sigma'_i \) exists so that \(u_i(\sigma'_i, s_i) > u_i(s_i, s_i) \) for all \(s_i \in S_i \)

- ... weakly dominated:

 \(u_i(\sigma'_i, s_i) \geq u_i(s_i, s_i) \) for all \(s_i \in S_i \) (and > for at least one \(s_i \))

- If \(u_i(\sigma'_i, s_i) > u_i(s_i, s_i) \) for all \(s_i \in S_i \) we also have \(u_i(\sigma'_i, \sigma_i) > u_i(s_i, \sigma_i) \) for all \(\sigma_i \in S_i \) because

 \(u_i(\sigma'_i, \sigma_i) \) is a convex function of \(u_i(\sigma'_i, s_i), u_i(\sigma_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma_i, s'_i) \),

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:

 \(s_i \in S_i \): “other player’s strategies”

- Short notation: \((s'_i, s_i) := (s_1, \ldots, s_{i-1}, s'_i, s_{i+1}, \ldots, s_n)\)

- Same for mixed strategies: \((\sigma'_i, \sigma_i) := (\sigma_1, \ldots, \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, \ldots, \sigma_n)\)

Definition:

- Pure strategy \(s_i \) is strictly dominated for player i if \(\sigma'_i \) exists so that \(u_i(\sigma'_i, s_i) > u_i(s_i, s_i) \) for all \(s_i \in S_i \)

- ... weakly dominated:

 \(u_i(\sigma'_i, s_i) \geq u_i(s_i, s_i) \) for all \(s_i \in S_i \) (and > for at least one \(s_i \))

- If \(u_i(\sigma'_i, s_i) > u_i(s_i, s_i) \) for all \(s_i \in S_i \) we also have \(u_i(\sigma'_i, \sigma_i) > u_i(s_i, \sigma_i) \) for all \(\sigma_i \in S_i \) because

 \(u_i(\sigma'_i, \sigma_i) \) is a convex function of \(u_i(\sigma'_i, s_i), u_i(\sigma_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma_i, s'_i) \),

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:

 \(s_i \in S_i \): “other player’s strategies”

- Short notation: \((s'_i, s_i) := (s_1, \ldots, s_{i-1}, s'_i, s_{i+1}, \ldots, s_n)\)

- Same for mixed strategies: \((\sigma'_i, \sigma_i) := (\sigma_1, \ldots, \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, \ldots, \sigma_n)\)

Definition:

- Pure strategy \(s_i \) is strictly dominated for player i if \(\sigma'_i \) exists so that \(u_i(\sigma'_i, s_i) > u_i(s_i, s_i) \) for all \(s_i \in S_i \)

- ... weakly dominated:

 \(u_i(\sigma'_i, s_i) \geq u_i(s_i, s_i) \) for all \(s_i \in S_i \) (and > for at least one \(s_i \))

- If \(u_i(\sigma'_i, s_i) > u_i(s_i, s_i) \) for all \(s_i \in S_i \) we also have \(u_i(\sigma'_i, \sigma_i) > u_i(s_i, \sigma_i) \) for all \(\sigma_i \in S_i \) because

 \(u_i(\sigma'_i, \sigma_i) \) is a convex function of \(u_i(\sigma'_i, s_i), u_i(\sigma_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma_i, s'_i) \),
Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$
 - Short notation:
 - Same for function:
 - Strictly Convex function:
 \[f(tx+(1-t)y) < t f(x) + (1-t)f(y) \]

Definition:

- Pure strategy
 - $u_i(\sigma'_i, s_i)$
 - ... weakly
 - $u_i(\sigma'_i, s_i) \geq u_i(s_i, s_i)$ for all $s_i \in S_i$ (and > for at least one s_i)

- If $u_i(\sigma'_i, s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$ we also have
 - $u_i(\sigma'_i, \sigma'_{-i}) > u_i(s_i, \sigma'_{-i})$ for all $\sigma'_{-i} \in S_{-i}$ because
 - $u_i(\sigma'_i, \sigma'_{-i})$ is a convex function of $u_i(\sigma'_i, s'_{-i}), u_i(\sigma'_i, s_{-i}), u_i(\sigma'_i, s''_{-i})$,...

Games in Strategic Form & Nash Equilibrium

- What about dominated mixed strategies?
 - Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated
 - But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1 , 3</td>
<td>-2 , 0</td>
</tr>
<tr>
<td>M</td>
<td>-2 , 0</td>
<td>1 , 3</td>
</tr>
<tr>
<td>D</td>
<td>0 , 1</td>
<td>0 , 1</td>
</tr>
</tbody>
</table>

Example:

- U and M are not dominated by D for player 1
- But: Playing $\sigma_1 = (\frac{1}{3}, \frac{1}{3}, 0)$ gives expected utility $u_1(\sigma_1, s) = \frac{1}{2}$ no matter what 2 plays
- $D (\sigma_0 = (0, 0, 1))$ dominates σ_1

Games in Strategic Form & Nash Equilibrium

- What about dominated mixed strategies?
 - Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated
 - But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1 , 3</td>
<td>-2 , 0</td>
</tr>
<tr>
<td>M</td>
<td>-2 , 0</td>
<td>1 , 3</td>
</tr>
<tr>
<td>D</td>
<td>0 , 1</td>
<td>0 , 1</td>
</tr>
</tbody>
</table>

Example:

- U and M are not dominated by D for player 1
- But: Playing $\sigma_1 = (\frac{1}{3}, \frac{1}{3}, 0)$ gives expected utility $u_1(\sigma_1, s) = \frac{1}{2}$ no matter what 2 plays
- $D (\sigma_0 = (0, 0, 1))$ dominates σ_1
Games in Strategic Form & Nash Equilibrium

- What about dominated mixed strategies?
- Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated
- But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 3</td>
<td>-2, 0</td>
</tr>
<tr>
<td>M</td>
<td>-2, 0</td>
<td>1, 3</td>
</tr>
<tr>
<td>D</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

Example:
- U and M are not dominated by D for player 1
- But: Playing $\sigma_1=(\frac{1}{3}, \frac{1}{3}, 0)$ gives expected utility $u_1(\sigma, *)=-1/2$ no matter what 2 plays $\Rightarrow D(\sigma_D=(0, 0, 1))$ dominates σ_1

A note on rationality

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>8, 10</td>
<td>-100, 9</td>
</tr>
<tr>
<td>D</td>
<td>7, 6</td>
<td>6, 5</td>
</tr>
</tbody>
</table>

- Iterated strict dominance \Rightarrow (U,L)
- BUT: psychology \Rightarrow play D instead of U because „U is unsafe“

Games in Strategic Form & Nash Equilibrium

Games in Strategic Form & Nash Equilibrium

A note on rationality

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>8, 10</td>
<td>-100, 9</td>
</tr>
<tr>
<td>D</td>
<td>7, 6</td>
<td>6, 5</td>
</tr>
</tbody>
</table>

- Iterated strict dominance \Rightarrow (U,L)
- BUT: psychology \Rightarrow play D instead of U because „U is unsafe“
A note on rationality

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>8, 10</td>
<td>-100, 9</td>
</tr>
<tr>
<td>D</td>
<td>7, 6</td>
<td>6, 5</td>
</tr>
</tbody>
</table>

- Iterated strict dominance → (U,L)
- **BUT:** psychology → play R instead of U because "U is unsafe"

Game Theory ↔ Decision Theory

Example

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 3</td>
<td>4, 1</td>
</tr>
<tr>
<td>D</td>
<td>0, 2</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

- Iterated strict dominance → (U,L)
- **If player 1 reduces his payoff for U by 2:**
 - **decision theory:** no use
 - **game theory:** new iterated strict dominance → (D,R)
Games in Strategic Form & Nash Equilibrium

Game Theory ↔ Decision Theory

Example

- Iterated strict dominance \(\rightarrow (U,L)\)

\[
\begin{array}{c|cc}
 & L & R \\
\hline
U & 1, 3 & 4, 1 \\
D & 0, 2 & 3, 4 \\
\end{array}
\]

- If player 1 reduces his payoff for U by 2:
 - decision theory: no use
 - game theory: new iterated strict dominance \(\rightarrow (D,R)\)

\[
\begin{array}{c|cc}
 & L & R \\
\hline
U & -1, 3 & 2, 1 \\
D & 0, 2 & 3, 4 \\
\end{array}
\]

Games in Strategic Form & Nash Equilibrium

Prisoner’s dilemma & Iterated dominance

\[
\begin{array}{c|cc}
 & C & D \\
\hline
C & 1, 1 & -1, 2 \\
D & 2, -1 & 0, 0 \\
\end{array}
\]

- Iterated strict dominance \(\rightarrow (D,D)\)
Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- **Good’s valuations:** v_i ; Assume common knowledge for the moment
- **Bids:** s_i
- **Second price:**
 - winning condition: $s_i > \max_{i \neq j} s_j$
 - let $r_i := \max_{i \neq j} s_j$; r_i is the price having to be paid
 - winner i’s utility: $u_i = v_i - r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: loosely $u_i = 0$ \rightarrow could have bid v_i as well
 - If $r_i \leq v_i$: wins $u_i = v_i - r_i$ \rightarrow could have bid v_i as well

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- **Good’s valuations:** v_i ; Assume common knowledge for the moment
- **Bids:** s_i
- **Second price:**
 - winning condition: $s_i > \max_{i \neq j} s_j$
 - let $r_i := \max_{i \neq j} s_j$; r_i is the price having to be paid
 - winner i’s utility: $u_i = v_i - r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: loosely $u_i = 0$ \rightarrow could have bid v_i as well
 - If $r_i \leq v_i$: wins $u_i = v_i - r_i$ \rightarrow could have bid v_i as well
Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- **Good's valuations**: v_i; Assume common knowledge for the moment
- **Bids**: s_i
- **Second price:**
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i's utility: $u_i = v_i - r_i$; other players utility = 0

 for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: looses $u_i = 0$
 - could have bid v_i as well
 - If $r_i \leq v_i$: wins $u_i = v_i - r_i$
 - could have bid v_i as well

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

 - case $v_i < r_i < s_i$
 - i wins $u_i = v_i - r_i < 0$ (winner's curse)
 - should have bid $v_i = r_i$; $u_i = 0$ at least
 - case $s_i < v_i$: (underbidding)
 - If $r_i \leq s_i$ or $r_i \geq v_i$
 - u_i is unchanged if he bids v_i instead of s_i
 - If $s_i \leq r_i < v_i$
 - bidder forgoes positive winning chances by underbidding

 - Assumption of common knowledge my be dropped because bidding own valuation is weakly dominant for each player
Vickrey Auction & Iterated dominance

- case $v_i < r_i < s_i$:
 - i wins $\Rightarrow u_i = v_i - r_i < 0$ (winner’s curse)
 - should have bid $v_i = r_i \Rightarrow u_i = 0$ at least

- case $s_i < v_i$ (underbidding)
 - If $r_i \leq s_i$ or $r_i \geq v_i$:
 - u_i is unchanged if he bids v_i instead of s_i
 - If $s_i < r_i < v_i$:
 - bidder forgoes positive winning chances by underbidding

Assumption of common knowledge may be dropped because bidding own valuation is weakly dominant for each player.

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player’s strategy is optimal response to all other player’s strategies:

- Mixed strategy profile σ^* is Nash Equilibrium if
 for all i: $u_i(\sigma^*_{-i}, \sigma^*_i) \geq u_i(S_i, \sigma^*_i)$ for all $s_i \in S_i$
 (Pure strategy profiles also possible \Rightarrow “pure strategy NE”)

- Strategy profile s^* is Strict Nash Equilibrium: if it is a NE and
 for all i: $u_i(s^*_i, s^*_{-i}) > u_i(S_i, s^*_i)$ for all $s_i \neq s^*$.
 Strict NE is necessarily a pure strategy NE by definition.
Nash Equilibrium

- Nash Equilibrium: strategy profile: each player’s strategy is optimal response to all other player’s strategies.

- Mixed strategy profile σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*_i, \sigma^*_{-i}) \geq u_i(s_i, \sigma^*_{-i})$ for all $s_i \in S_i$ (Pure strategy profiles also possible → „pure strategy NE“)

- Strategy profile s^* is Strict Nash Equilibrium: if it is a NE and for all i: $u_i(s^*_i, s^*_{-i}) > u_i(s_i, s^*_{-i})$ for all $s_i \neq s^*_i$. Strict NE is necessarily a pure strategy NE by definition.

Nash Equilibrium

- From previous slide: σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*_i, \sigma^*_{-i}) \geq u_i(s_i, \sigma^*_{-i})$ for all $s_i \in S_i$

- Expected utilities are „linear in the probabilities“
 - In NE def we must only check for pure alternatives s_i
 - In a (non-degenerate) mixed strategy Nash Equilibrium a player must be (a priori) indifferent between all pure strategies to which he assigns positive probability (Indifference condition)

(we will analyze this in more depth later)
Indifference condition: more detailed explanation:

For player i's utility, we have:

$$ u_i(\sigma) = \sum_{s_i \in S_u} \sigma_i(s_i) u_i(s_i, \sigma_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i(s_i) = 1 $$

for the NE σ^* we thus have:

$$ u_i(\sigma^*) = \sum_{s_i \in S_u} \sigma_i^*(s_i) u_i(s_i, \sigma_{-i}^*) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i^*(s_i) = 1 $$

since $u_i(\sigma^*)$ is the best outcome, I can achieve, when the others play σ_{-i}^*, all the $u_i(s_i, \sigma_{-i}^*)$ with $\sigma_i(s_i) > 0$ must be equal, and equal to $u_i(\sigma^*)$.

why? \rightarrow no $u_i(s_i, \sigma_{-i}^*)$ can be greater than $u_i(\sigma^*)$ otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.

Indifference condition: more detailed explanation:

For player i's utility, we have:

$$ u_i(\sigma) = \sum_{s_i \in S_u} \sigma_i(s_i) u_i(s_i, \sigma_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i(s_i) = 1 $$

for the NE σ^* we thus have:

$$ u_i(\sigma^*) = \sum_{s_i \in S_u} \sigma_i^*(s_i) u_i(s_i, \sigma_{-i}^*) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i^*(s_i) = 1 $$

since $u_i(\sigma^*)$ is the best outcome, I can achieve, when the others play σ_{-i}^*, all the $u_i(s_i, \sigma_{-i}^*)$ with $\sigma_i(s_i) > 0$ must be equal, and equal to $u_i(\sigma^*)$.

why? \rightarrow no $u_i(s_i, \sigma_{-i}^*)$ can be greater than $u_i(\sigma^*)$ otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.
Nash Equilibrium

- From previous slide: σ^* is Nash Equilibrium if for all i: $u_i(\sigma^{*,i}, \sigma^{*,\cdot}) \geq u_i(s_i, \sigma^{*,\cdot})$ for all $s_i \in S_i$
- Expected utilities are "linear in the probabilities"

\rightarrow In NE def we must only check for pure alternatives s_i

\rightarrow In a (non-degenerate) mixed strategy Nash Equilibrium a player must be (a priori) indifferent between all pure strategies to which he assigns positive probability (Indifference condition)

(we will analyze this in more depth later)

Indifference condition: more detailed explanation:

For player i's utility, we have:

$$u_i(\sigma) = \sum_{s_i \in S_u} \sigma_i(s_i) u_i(s_i, \sigma_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i(s_i) = 1$$

For the NE σ^* we thus have:

$$u_i(\sigma^*) = \sum_{s_i \in S_u} \sigma_i^*(s_i) u_i(s_i, \sigma_{-i}^*) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i^*(s_i) = 1$$

since $u_i(\sigma^*)$ is the best outcome, i can achieve, when the others play σ_{-i}^*, all the $u_i(s_i, \sigma_{-i}^*)$ with $\sigma_i(s_i) > 0$ must be equal, and equal to $u_i(\sigma^*)$.

why? \rightarrow no $u_i(s_i, \sigma_{-i}^*)$ can be greater than $u_i(\sigma^*)$ otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.

Indifference condition: more detailed explanation:

For player i's utility, we have:

$$u_i(\sigma) = \sum_{s_i \in S_u} \sigma_i(s_i) u_i(s_i, \sigma_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i(s_i) = 1$$

for the NE σ^* we thus have:

$$u_i(\sigma^*) = \sum_{s_i \in S_u} \sigma_i^*(s_i) u_i(s_i, \sigma_{-i}^*) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i^*(s_i) = 1$$

since $u_i(\sigma^*)$ is the best outcome, i can achieve, when the others play σ_{-i}^*, all the $u_i(s_i, \sigma_{-i}^*)$ with $\sigma_i(s_i) > 0$ must be equal, and equal to $u_i(\sigma^*)$.

why? \rightarrow no $u_i(s_i, \sigma_{-i}^*)$ can be greater than $u_i(\sigma^*)$ otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.
Nash Equilibrium

- Strict equilibria need not exist. However each finite strategy form game has a mixed strategy equilibrium.
- In NE no player has incentive to deviate from NE
- In reality: If rationality is "non-strict" (mistakes are made): deviations can occur
- If one round of elimination of strictly dominated strategies yields unique strategy profile, this strategy profile is a strict NE (unique)
- In NE, positive probabilities may only be assigned to not-strictly dominated strategies (Otherwise profit may be increased by choosing a dominating strategy).

Nash Equilibrium: Example: Cournot Competition

- Cournot model: Duopoly. Each of two firms (players) i produces same good.
- Output levels \(q_i \) are chosen from sets \(Q_i \)
- Cost of production is \(c_i(q_i) \)
- Market price is \(p(q) = p(q_1 + q_2) \)
- Firm i's profit is then \(u_i(q_i, q_j) = q_i p(q) - c_i(q_i) \)
- Cournot reaction functions \(r_1 : Q_2 \rightarrow Q_1 \) and \(r_2 : Q_1 \rightarrow Q_2 \) specify optimal reaction on output level of opponent
Nash Equilibrium: Example: Cournot Competition

- **Cournot model: Duopoly.** Each of two firms (players) i produces same good.
- Output levels \(q_i \) are chosen from sets \(Q_i \)
- Cost of production is \(c_i(q_i) \)
- Market price is \(p(q) = p(q_1 + q_2) \)
- Firm i’s profit is then \(u_i(q_1, q_2) = q_i(p(q) - c_i(q_i)) \)
- Cournot reaction functions \(r_i : Q_2 \rightarrow Q_1 \) and \(r_2 : Q_1 \rightarrow Q_2 \) specify optimal reaction on output level of opponent

Under certain reasonable assumptions (see [1]) we can maximize e.g. \(u_2(q_1, q_2) \) by solving \(\frac{du_2}{dq_2} = u_2(q_1, q_2) = p(q_1, q_2) + p'(q_1, q_2) q_2 - c_2(q_1) = 0 \).

Inserting \(r_2(q_1) \) for \(q_2 \)

\[
p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0
\]

gives the defining equation for \(r_2(.) \).

(analogous for \(r_1(.) \)).

The intersections of the functions \(r_2 \) and \(r_1 \) are the NE of the Cournot game.

Example: Linear demand \(p(q) = \max(0, 1-q) \); linear cost: \(c_i(q_i) = c q_i \);

\[
\rightarrow r_2(q_1) = 1/2 (1 - q_1 - c); \quad r_1(q_2) = 1/2 (1 - q_2 - c);
\]

\(\rightarrow \) NE: \(q^*_1 = r_2(q^*_1) = 1/3 (1-c) = q^*_2 = r_1(q^*_2) \)
Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving $d/dq_2 \ u_2(q_1, q_2) = 0$ which yields
 \[d/dq_2 [q_2 \, p(q_1, q_2) - c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) q_2 - c_2'(q_2) = 0. \]
- Inserting $r_2(q_1)$ for q_2
 \[p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0 \]
- gives the defining equation for $r_2(\cdot)$.
 (analogous for $r_1(\cdot)$).

- The intersections of the functions r_2 and r_1 are the NE of the Cournot game.

- Example: Linear demand $p(q) = \max(0, 1-q)$; linear cost: $c_i(q_i) = c q_i$:
 \[\rightarrow r_2(q_1) = 1/2 (1 - q_1 - c); \quad r_1(q_1) = 1/2 (1 - q_2 - c); \]
 \[\rightarrow \text{NE: } q^*_2 = r_2(q^*_1) = 1/3 (1-c) = q^*_1 = r_1(q^*_1) \]

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving $d/dq_2 \ u_2(q_1, q_2) = 0$ which yields
 \[d/dq_2 [q_2 \, p(q_1, q_2) - c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) q_2 - c_2'(q_2) = 0. \]
 (analogous for $r_1(\cdot)$).
- The intersections of the functions r_2 and r_1 are the NE of the Cournot game.

- Example: Linear demand $p(q) = \max(0, 1-q)$; linear cost: $c_i(q_i) = c q_i$:
 \[\rightarrow r_2(q_1) = 1/2 (1 - q_1 - c); \quad r_1(q_1) = 1/2 (1 - q_2 - c); \]
 \[\rightarrow \text{NE: } q^*_2 = r_2(q^*_1) = 1/3 (1-c) = q^*_1 = r_1(q^*_1) \]

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving $d/dq_2 \ u_2(q_1, q_2) = 0$ which yields
 \[d/dq_2 [q_2 \, p(q_1, q_2) - c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) q_2 - c_2'(q_2) = 0. \]
 (analogous for $r_1(\cdot)$).
- The intersections of the functions r_2 and r_1 are the NE of the Cournot game.

- Example: Linear demand $p(q) = \max(0, 1-q)$; linear cost: $c_i(q_i) = c q_i$:
 \[\rightarrow r_2(q_1) = 1/2 (1 - q_1 - c); \quad r_1(q_1) = 1/2 (1 - q_2 - c); \]
 \[\rightarrow \text{NE: } q^*_2 = r_2(q^*_1) = 1/3 (1-c) = q^*_1 = r_1(q^*_1) \]
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. \(u_2(q_1, q_2) \) by solving \(\frac{d}{dq_2} u_2(q_1, q_2) = 0 \) which yields
 \[
 \frac{d}{dq_2}' \{ q_2, p(q_1, q_2) - c_2(q_2) \} = p(q_1, q_2) + p'(q_1, q_2) q_2 - c_2'(q_2) = 0.
 \]
 Inserting \(r_2(q_1) \) for \(q_2 \)
 \[
 p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0
 \]
gives the defining equation for \(r_2(.) \).
 (analogous for \(r_1(.) \)).

- The intersections of the functions \(r_2 \) and \(r_1 \) are the NE of the Cournot game.

 Example: Linear demand \(p(q) = \max(0, 1-q) \); linear cost: \(c_i(q_i) = c q_i \)
 \[
 \Rightarrow r_2(q_1) = 1/2 (1 - q_1 - c) \quad r_1(q_2) = 1/2 (1 - q_2 - c) \]
 \[
 \Rightarrow \text{NE: } q^*_2 = r_2(q^*_1) = 1/3 (1-c) \quad q^*_1 = r_1(q^*_2)
 \]

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Hotelling Competition

- Two firms, 1 (at x=0) and 2 (at x=1) sell same good
- Unit cost of product := c; price for product of firm i := \(p_i \)
- Customers: uniformly distributed over [0,1] with probability density 1
- Customer transportation cost: \(t \) per length unit
- Customers: have unit demand;
 - buy good if \(\text{price + transportation_cost} < \text{max_price} = \bar{s} \)
 - buy good from overall cheaper firm

Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. \(u_2(q_1, q_2) \) by solving \(\frac{d}{dq_2} u_2(q_1, q_2) = 0 \) which yields
 \[
 \frac{d}{dq_2}' \{ q_2, p(q_1, q_2) - c_2(q_2) \} = p(q_1, q_2) + p'(q_1, q_2) q_2 - c_2'(q_2) = 0.
 \]
 Inserting \(r_2(q_1) \) for \(q_2 \)
 \[
 p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0
 \]
gives the defining equation for \(r_2(.) \).
 (analogous for \(r_1(.) \)).

- The intersections of the functions \(r_2 \) and \(r_1 \) are the NE of the Cournot game.

 Example: Linear demand \(p(q) = \max(0, 1-q) \); linear cost: \(c_i(q_i) = c q_i \)
 \[
 \Rightarrow r_2(q_1) = 1/2 (1 - q_1 - c) \quad r_1(q_2) = 1/2 (1 - q_2 - c) \]
 \[
 \Rightarrow \text{NE: } q^*_2 = r_2(q^*_1) = 1/3 (1-c) \quad q^*_1 = r_1(q^*_2)
 \]

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Hotelling Competition

- Two firms, 1 (at x=0) and 2 (at x=1) sell same good
- Unit cost of product := c; price for product of firm i := \(p_i \)
- Customers: uniformly distributed over [0,1] with probability density 1
- Customer transportation cost: \(t \) per length unit
- Customers: have unit demand;
 - buy good if \(\text{price + transportation_cost} < \text{max_price} = \bar{s} \)
 - buy good from overall cheaper firm
Nash Equilibrium: Example: Hotelling Competition

- Demand for firm 1 is $D_1(p_1, p_2) = x \text{ where } p_1 + tx = p_2 + t(1-x)$
- \(D_1(p_1, p_2) = (p_2 - p_1) + t \) \(/ (2t) \)
- \(D_1(p_1, p_2) = 1 - D_2(p_1, p_2) \)
- Nash Equilibrium \((p^*_1, p^*_2)\): For each i: \(p^*_i \in \text{argmax} \{ (p_i - c) D_i(p_i, p^*_i) \} \)
- Denoting the reaction functions by \(r_1(p_2) \) and \(r_2(p_1) \) we get for e.g. firm 2:
 \[
 \frac{d}{dp_1} \left\{ (p_2 - c) D_2(p^*_1, p_2) \right\} = 0
 \]
 Afterwards insert \(r_2(p_1) \) for \(p_2 \) \(\rightarrow \)
 \[
 D_2(p_1, r_2(p_1)) + (r_2(p_1) - c) \frac{d}{dp_2} D_2(p_1, r_2(p_1)) = 0
 \]
 \[
 p^*_1 = p^*_2 = c + t \text{ for } c + 3/2 \leq \bar{s}
 \]

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Hotelling Competition

- Two firms, 1 (at x=0) and 2 (at x=1) sell same good
- Unit cost of product := c; price for product of firm i := p_i
- Customers: uniformly distributed over [0,1] with probability density 1
- Customer transportation cost: t per length unit
- Customers: have unit demand;
 - buy good if price + transportation_cost < max_price = \bar{s} ;
 - buy good from overall cheaper firm

\[
\begin{align*}
 & x=0 & \quad x=1 \\
 & \quad 1 & \quad 2
\end{align*}
\]
Nash Equilibrium: Example: Hotelling Competition

- Demand for firm 1 is $D_1(p_1, p_2) = x$ where $p_1 + tx = p_2 + t(1-x)$
- $D_1(p_1, p_2) = (p_2 - p_1 + t) / (2t)$
- $D_1(p_1, p_2) = 1 - D_2(p_1, p_2)$
- Nash Equilibrium (p^*_1, p^*_2): For each $i: p^*_i \in argmax \{ (p_1 - c) D_1(p_1, p_1^*) \}$
- Denoting the reaction functions by $r_2(p_1)$ and $r_1(p_2)$ we get for e.g. firm 2:
 \[
 d/dp_2 \{ (p_2 - c) D_2(p_2^*, p_2) \} = 0 \quad \text{and afterwards insert } r_2(p_1) \text{ for } p_2 \\
 D_2(p_1, r_2(p_1)) + (r_2(p_1) - c) d/dp_2 D_2(p_1, r_2(p_1)) = 0 \quad \text{for } c + 3/2t \leq 5
 \]

Nash Equilibrium: Non-Existence-of Pure NE-Example

- Some games may have more than one pure strategy NE
- Not all games have a pure strategy NE:
- Example: Matching pennies:
 \[
 \begin{array}{c|c|c}
 & H & T \\ \hline
 H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1
 \end{array}
 \]
- Both players simultaneously announce
- Head or Tails: IF match \rightarrow 1 wins; If differ \rightarrow 2 wins
- No pure NE;
 but mixed strategy NE: $(1/2, 1/2); (1/2, 1/2)$:
- Reasoning: If player 2 plays (1/2, 1/2) then player 1’s expected payoff is $1/2 * 1 + 1/2 * (-1) = 0$ when playing H and $1/2 * (-1) + 1/2 * 1 = 0$ when playing T. Player 1 is also indifferent.

Nash Equilibrium: Non-Existence-of Pure NE-Example

- Some games may have more than one pure strategy NE
- Not all games have a pure strategy NE:
- Example: Matching pennies:
 \[
 \begin{array}{c|c|c}
 & H & T \\ \hline
 H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1
 \end{array}
 \]
- Both players simultaneously announce
- Head or Tails: IF match \rightarrow 1 wins; If differ \rightarrow 2 wins
- No pure NE;
 but mixed strategy NE: $(1/2, 1/2); (1/2, 1/2)$:
- Reasoning: If player 2 plays (1/2, 1/2) then player 1’s expected payoff is $1/2 * 1 + 1/2 * (-1) = 0$ when playing H and $1/2 * (-1) + 1/2 * 1 = 0$ when playing T. Player 1 is also indifferent.
Nash Equilibrium: Non-Existence of Pure NE-Example

- Some games may have more than one pure strategy NE
- Not all games have a pure strategy NE:
- Example: Matching pennies:

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both players simultaneously announce Head or Tails: If match → 1 wins; If differ → 2 wins</td>
<td>1, -1</td>
<td>-1, 1</td>
</tr>
<tr>
<td>No pure NE; but mixed strategy NE: [(1/2, 1/2); (1/2, 1/2)]</td>
<td>T</td>
<td>-1, 1</td>
</tr>
</tbody>
</table>

Reasoning: If player 2 plays (1/2, 1/2) then player 1’s expected payoff is 1/2 * 1 + 1/2 * (-1) = 0 when playing H and 1/2 * 1 + 1/2 * (-1) = 0 when playing T → player 1 is also indifferent

Another example: Inspection game
- Worker: work or shirk; Employer: Inspect or not inspect
- Worker: working costs g, produces value v; gets wage w
- Employer: Inspection costs h
- We assume $w > g > h > 0$
- If not inspect → worker shirks → better inspect → if inspect → worker always works → better not inspect →: No pure NE
- Employer must randomize
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence—of Pure NE—Example 2

- Another example: Inspection game
 - Worker: work or shirk; Employer: Inspect or not inspect
 - Worker: working costs g, produces value v; gets wage w
 - Employer: Inspection costs h
 - We assume $w > g > h > 0$
 - If not inspect \rightarrow worker shirks \rightarrow better inspect \rightarrow if inspect \rightarrow worker always works \rightarrow better not inspect \rightarrow ...: No pure NE
 - \rightarrow Employer must randomize

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>NI</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$0, -h$</td>
<td>$w, -w$</td>
</tr>
<tr>
<td>W</td>
<td>$w-g, v-w-h$</td>
<td>$w-g, v-w$</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence—of Pure NE—Example 2

Nash Equilibrium: Example: Hotelling Competition

- Two firms, 1 (at $x=0$) and 2 (at $x=1$) sell same good
- Unit cost of product $= c$; price for product of firm $i := p_i$
- Customers: uniformly distributed over $[0,1]$ with probability density 1
- Customer transportation cost: t per length unit
- Customers: have unit demand; buy good if $\text{price} + \text{transportation cost} < \text{max price} = \bar{s}$, buy good from overall cheaper firm

\[
\begin{array}{c|c|c}
\text{Customer} & \text{Location} & \text{Decision} \\
\hline
1 & x=0 & \text{Buy from firm 1} \\
2 & x=1 & \text{Buy from firm 2} \\
\end{array}
\]
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- **Another example: Battle of the sexes**

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- **Another example: Game of chicken**

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-1, -1</td>
<td>2, 1</td>
</tr>
<tr>
<td>W</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Nash Equilibrium: More than one NE

- **Another example: Battle of the sexes**

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- **Another example: Game of chicken**

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-1, -1</td>
<td>2, 1</td>
</tr>
<tr>
<td>W</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
 - Two pure NE: (F,F) and (B,B)
 - One mixed NE: Indifference condition
 \(\sigma_1(F) = x \) and \(\sigma_2(B) = y \)
 Player 1's indifference:
 \(0 + 2(1-y) = 1 \Rightarrow y = 2/3 \)
 Player 2's indifference:
 \(0 + 2(1-x) = 1 \Rightarrow x = 2/3 \)
 Mixed NE: \((2/3, 1/3); (2/3, 1/3))

- Another example: Game of chicken
 - (same reasoning)
 - Mixed NE: \((1/2, 1/2); (1/2, 1/2))

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
 - Two pure NE: (F,F) and (B,B)
 - One mixed NE: Indifference condition
 \(\sigma_1(F) = x \) and \(\sigma_2(B) = y \)
 Player 1's indifference:
 \(0 + 2(1-y) = 1 \Rightarrow y = 2/3 \)
 Player 2's indifference:
 \(0 + 2(1-x) = 1 \Rightarrow x = 2/3 \)
 Mixed NE: \((2/3, 1/3); (2/3, 1/3))

- Another example: Game of chicken
 - (same reasoning)
 - Mixed NE: \((1/2, 1/2); (1/2, 1/2))

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-1, -1</td>
<td>2, 1</td>
</tr>
<tr>
<td>W</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
 - Two pure NE: (F,F) and (B,B)
 - One mixed NE: Indifference condition
 \(\sigma_1(F) = x \) and \(\sigma_2(B) = y \)
 Player 1's indifference:
 \(0 + 2(1-y) = 1 \Rightarrow y = 2/3 \)
 Player 2's indifference:
 \(0 + 2(1-x) = 1 \Rightarrow x = 2/3 \)
 Mixed NE: \((2/3, 1/3); (2/3, 1/3))

- Another example: Game of chicken
 - (same reasoning)
 - Mixed NE: \((1/2, 1/2); (1/2, 1/2))

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-1, -1</td>
<td>2, 1</td>
</tr>
<tr>
<td>W</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE \(\Rightarrow \) which will be chosen?
- Theory of „focalness“ of NE („focal points“):
 Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: \((C,C)\) and \((D,D)\); \((C,C)\) is pareto-dominant \(\Rightarrow \) \((C,C)\) might be chosen if \(p(C)<0.5 \) BUT
- more than two players: ALL have to agree on \(C \) \(\Rightarrow p(C)<0.5 \) \(p(C)>0.93 \) \(\Rightarrow \) \((D,D)\) „risk dominates“ \((C,C)\)

<table>
<thead>
<tr>
<th>Hunt Stag (C)</th>
<th>Hunt Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Stag (C)</td>
<td>2, 2</td>
</tr>
<tr>
<td>Hunt Hare (D)</td>
<td>1, 0</td>
</tr>
</tbody>
</table>
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of „focalness“ of NE („focal points“):
 Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant → (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C → p(C)^3>0.5 → p(C)>0.93 → (D;D) „risk dominates“ (C;C)

<table>
<thead>
<tr>
<th></th>
<th>Hunt Stag (C)</th>
<th>Hunt Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Stag (C)</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Hunt Hare (D)</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of „focalness“ of NE („focal points“):
 Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant → (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C → p(C)^3>0.5 → p(C)>0.93 → (D;D) „risk dominates“ (C;C)

<table>
<thead>
<tr>
<th></th>
<th>Hunt Stag (C)</th>
<th>Hunt Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Stag (C)</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Hunt Hare (D)</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of „focalness“ of NE („focal points“):
 Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant → (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C → p(C)^3>0.5 → p(C)>0.93 → (D;D) „risk dominates“ (C;C)

<table>
<thead>
<tr>
<th></th>
<th>Hunt Stag (C)</th>
<th>Hunt Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Stag (C)</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Hunt Hare (D)</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE \(\rightarrow \) which will be chosen?
- Theory of „focalness“ of NE („focal points“):
 Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C,C) and (D,D); (C,C) is pareto-dominant \(\rightarrow \) (C,C) might be chosen if \(p(C) > 0.5 \) BUT
- more than two players: ALL have to agree on C \(\rightarrow \) \(p(C)^0 > 0.5 \) \(\rightarrow \) \(p(C) > 0.93 \) \(\rightarrow \) (D,D) „risk dominates“ (C,C)

<table>
<thead>
<tr>
<th>Hunt Stag (C)</th>
<th>Hunt Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Nash Equilibrium: More than one NE

Risk Dominance / Pareto Optimality

- In this game: (Among others) two pure NE: (U,L) and (D,R); (U,L): Pareto dominates (D,R)
- But: For player 1 D is safer (guarantees min payoff of 7) \(\rightarrow \) if \(p(R) > 1/8 \) don’t go for (U,L) \(\rightarrow \) no certainty!
- Pregame-communication / agreement on (U,L) ?!
 No: player 2 gains if player 1 plays U \(\rightarrow \) player 2 will always tell „L” regardless of true intentions \(\rightarrow \) agreement is worthless

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>9, 9</td>
</tr>
<tr>
<td>D</td>
<td>8, 0</td>
</tr>
</tbody>
</table>

Nash Equilibrium: More than one NE

Risk Dominance / Pareto Optimality

- Three player game: Two pure NE: (U,L,A) and (D,R,B); (and one mixed); (U,L,A) pareto-dominates (D,R,B)
- If player 3’s choice is fixed \(\rightarrow \) Two player game \(\rightarrow \) (D,R) is pareto-dominant \(\rightarrow \) if players 1 and 2 expect A : coordinate on (D,R).
- \(\rightarrow \) concept of „coalition proof eq.“ (here (D,R,B))(see [1])

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0,0,10</td>
</tr>
<tr>
<td>D</td>
<td>-5,-5,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-2,-2,0</td>
</tr>
<tr>
<td>D</td>
<td>-5,-5,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,1,-5</td>
</tr>
<tr>
<td>B</td>
<td>-1,1,-5</td>
</tr>
</tbody>
</table>
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Risk Dominance / Pareto Optimality

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0.0,10</td>
<td>-5,-5,0</td>
</tr>
<tr>
<td>D</td>
<td>-5,-5,0</td>
<td>1,1,-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-2,-2,0</td>
<td>-5,-5,0</td>
</tr>
<tr>
<td>D</td>
<td>-5,-5,0</td>
<td>-1,-1,5</td>
</tr>
</tbody>
</table>

- Three player game: Two pure NE: (U,L,A) and (D,R,B); (and one mixed); (U,L,A) pareto-dominates (D,R,B)
- If player 3’s choice is fixed → Two player game → (D,R) is pareto-dominant → if players 1 and 2 expect A: coordinate on (D,R).
- → concept of “coalition proof eq.” (here (D,R,B))(see [1])

Games in Strategic Form & Nash Equilibrium

Mixed Nash Equilibrium: General Analysis for 2 x 2 Games

(see [2])

<table>
<thead>
<tr>
<th>Pure NE: One cell ➔</th>
<th>Player B</th>
<th>q</th>
<th>1-q</th>
</tr>
</thead>
<tbody>
<tr>
<td>For A: cell’s payoff for A must be (weak) maximum over rows in that column</td>
<td>Player A</td>
<td>p</td>
<td>1-p</td>
</tr>
<tr>
<td>For B: cell’s payoff for B must be (weak) maximum over column in that row</td>
<td></td>
<td>a_{UL}, b_{UL}</td>
<td>a_{UR}, b_{UR}</td>
</tr>
</tbody>
</table>

- Example: (U,R) is pure NE if \(a_{UR} \geq a_{DR} \) and \(b_{UR} \geq b_{UL} \)