Basics

- Basic scenario: Players simultaneously choose action to perform \rightarrow result of the actions they select \rightarrow outcome in discrete state space Ω
- outcome depends on the combination of actions
- Assume: each player has just two possible actions C ("cooperate") and D ("defect")
- Environment behavior given by state transformer function:
 $$ \tau : \mathcal{A} \times \mathcal{A} \rightarrow \Omega $$
 Player i's action \times Player j's action

Rational Behavior

- Assumption: Environment is sensitive to actions of both players:
 $$ \tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_3 \quad \tau(C, C) = \omega_4 $$
- Utility functions:
 $$ u_i(\omega_1) = 1 \quad u_i(\omega_2) = 1 \quad u_i(\omega_3) = 4 \quad u_i(\omega_4) = 4 $$
 $$ u_j(\omega_1) = 1 \quad u_j(\omega_2) = 4 \quad u_j(\omega_3) = 1 \quad u_j(\omega_4) = 4 $$
- Short notation:
 $$ u_i(D, D) = 1 \quad u_i(D, C) = 1 \quad u_i(C, D) = 4 \quad u_i(C, C) = 4 $$
 $$ u_j(D, D) = 1 \quad u_j(D, C) = 4 \quad u_j(C, D) = 1 \quad u_j(C, C) = 4 $$
- \rightarrow player's preferences:
 (also in short notation): $C, C \succ_i C, D \succ_i D, C \succ_i D, D$
Assumption: Environment is sensitive to actions of both players: \(\tau(D, D) = \omega_1 \), \(\tau(D, C) = \omega_2 \), \(\tau(C, D) = \omega_3 \), \(\tau(C, C) = \omega_4 \).

Utility functions:
- \(u_i(\omega_1) = 1 \)_i
- \(u_i(\omega_2) = 1 \)_i
- \(u_i(\omega_3) = 4 \)_i
- \(u_i(\omega_4) = 4 \)_i

\(u_j(\omega_1) = 1 \)_j
\(u_j(\omega_2) = 4 \)_j
\(u_j(\omega_3) = 1 \)_j
\(u_j(\omega_4) = 4 \)_j

Short notation:
- \(u_i(D, D) = 1 \)_i
- \(u_i(D, C) = 1 \)_i
- \(u_i(C, D) = 4 \)_i
- \(u_i(C, C) = 4 \)_i

\(u_j(D, D) = 1 \)_j
\(u_j(D, C) = 4 \)_j
\(u_j(C, D) = 1 \)_j
\(u_j(C, C) = 4 \)_j

→ player's preferences:
(also in short notation):
- \(C, C \succ_i C, D \)
- \(C, D \succ_i D, D \)

Game theory: characterize the previous scenario in a payoff matrix:

\[
\begin{array}{cc|cc}
 & \text{defect} & \text{coop} \\
\hline
\text{defect} & 1 & 4 \\
\text{coop} & 1 & 4 \\
\end{array}
\]

\(C \) is the **rational choice** for \(i \).
(Because \(i \) (strongly) prefers all outcomes that arise through \(C \) over all outcomes that arise through \(D \).)

\(C \) is the **rational choice** for \(j \).
(Because \(j \) (strongly) prefers all outcomes that arise through \(C \) over all outcomes that arise through \(D \).)

Player \(i \) is “column player”
Player \(j \) is “row player”
Rational Behavior

• Game theory: characterize the previous scenario in a payoff matrix:

<table>
<thead>
<tr>
<th></th>
<th>defect</th>
<th>coop</th>
</tr>
</thead>
<tbody>
<tr>
<td>defect</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>coop</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

same as:

\[
\begin{align*}
& u_i(D, D) = 1 & u_i(D, C) = 1 & u_i(C, D) = 4 & u_i(C, C) = 4 \\
& u_j(D, D) = 1 & u_j(D, C) = 4 & u_j(C, D) = 1 & u_j(C, C) = 4
\end{align*}
\]

• Player i is “column player”
• Player j is “row player”

Rational Behavior

\[
\begin{align*}
& u_i(D, D) = 1 & u_i(D, C) = 1 & u_i(C, D) = 4 & u_i(C, C) = 4 \\
& u_j(D, D) = 1 & u_j(D, C) = 4 & u_j(C, D) = 1 & u_j(C, C) = 4
\end{align*}
\]

\[
\begin{align*}
& C, C \succeq_i C, D \succ_i D, C \succeq_i D, D \\
& C, C \succeq_j D, C \succ_j C, D \succeq_j D, D
\end{align*}
\]

• “C” is the rational choice for i.
 (Because i (strongly) prefers all outcomes that arise through C over all outcomes that arise through D.)

• “C” is the rational choice for j.
 (Because j (strongly) prefers all outcomes that arise through C over all outcomes that arise through D.)

Dominant Strategies and Nash Equilibria

• With respect to “what should I do”:
If \(\Omega = \Omega_1 \cup \Omega_2 \) we say \(\Omega_1 \) weakly dominates \(\Omega_2 \) for player i “iff for player i every state (outcome) in \(\Omega_1 \) is preferable to or at least as good as every state in \(\Omega_2 \):

\[
\forall \omega_1 \forall \omega_2 : (\omega_1 \in \Omega_1 \land \omega_2 \in \Omega_2) \rightarrow \omega_1 \succeq \omega_2
\]

• If \(\Omega = \Omega_1 \cup \Omega_2 \) we say \(\Omega_1 \) strongly dominates \(\Omega_2 \) for player i “iff for player i every state (outcome) in \(\Omega_1 \) is preferable to every state in \(\Omega_2 \):

\[
\forall \omega_1 \forall \omega_2 : (\omega_1 \in \Omega_1 \land \omega_2 \in \Omega_2) \rightarrow \omega_1 \succ \omega_2
\]

• Example:
\[
\begin{align*}
\Omega_1 & = \{ \omega_1, \omega_2, \omega_3, \omega_4 \} & \Omega_2 & = \{ \omega_3, \omega_4 \} \\
\omega_1 & \succ_i \omega_2 & \omega_3 & \succ_i \omega_4
\end{align*}
\]

\(\Omega_1 \) strongly dominates \(\Omega_2 \) for player i“.
Dominant Strategies and Nash Equilibria

- With respect to "what should I do":
 If \(\Omega = \Omega_1 \cup \Omega_2 \) we say \(\Omega_1 \) weakly dominates \(\Omega_2 \) for player \(i \) iff for player \(i \) every state (outcome) in \(\Omega_1 \) is preferable to or at least as good as every state in \(\Omega_2 \):
 \[
 \forall \omega_1 \forall \omega_2 : (\omega_1 \in \Omega_1 \land \omega_2 \in \Omega_2) \rightarrow \omega_1 \succeq_i \omega_2
 \]

- If \(\Omega = \Omega_1 \cup \Omega_2 \) we say \(\Omega_1 \) strongly dominates \(\Omega_2 \) for player \(i \) iff for player \(i \) every state (outcome) in \(\Omega_1 \) is preferable to every state in \(\Omega_2 \):
 \[
 \forall \omega_1 \forall \omega_2 : (\omega_1 \in \Omega_1 \land \omega_2 \in \Omega_2) \rightarrow \omega_1 \succ_i \omega_2
 \]

- Example:
 \[
 \Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\} \quad \Omega_1 = \{\omega_1, \omega_2\}
 \quad \Omega_2 = \{\omega_3, \omega_4\}
 \]
 \(\Omega_1 \) strongly dominates \(\Omega_2 \) for player \(i \):

Rational Behavior

- Game theory notation: actions are called "strategies"
- Notation: \(s^* \) is the set of possible outcomes (states) when "playing strategy \(s \)" (executing action \(s \))
- Example: if we have (as before):
 \[
 \tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_3 \quad \tau(C, C) = \omega_4
 \]
 we have (from player \(i \)'s point of view):
 \[
 D^* = \{\omega_1, \omega_2\} \quad C^* = \{\omega_3, \omega_4\}
 \]
- Notation: "strategy \(s_1 \) (strongly / weakly) dominates \(s_2 \)" iff \(s_1^* \) (strongly / weakly) dominates \(s_2^* \)
- If one strategy strongly dominates the other \(\rightarrow \) question what to do is easy. (do first)

Competitive and Zero-Sum Interactions

- Scenario ("strictly competitive"): Player \(i \) prefers outcome \(\omega \) over \(\omega' \) iff player \(j \) prefers outcome \(\omega \) over \(\omega' \):
 \[
 \omega \succeq_i \omega' \iff \omega' \succeq_j \omega
 \]

- Scenario ("zero-sum"): \(\forall \omega \in \Omega : u_i(\omega) + u_j(\omega) = 0 \)

- Zero-sum games are always strictly competitive
- Zero-sum games imply negative utility for "loser"
- Strictly zero-sum: only in games like chess. Real world never "strictly zero-sum" (Example: two girls compete to win the heart of the same guy). But: Unfortunately many encounters are perceived as zero sum games.
Competitive and Zero-Sum Interactions

- Scenario ("strictly competitive"): Player i prefers outcome ω over ω' iff player j prefers outcome ω' over ω:
 \[\omega \succ_i \omega' \iff \omega' \succ_j \omega \]

- Scenario ("zero-sum"): \[\forall \omega \in \Omega : u_i(\omega) + u_j(\omega) = 0 \]

- Zero-sum games are always strictly competitive

- Zero-sum games imply negative utility for "loser"

- Strictly zero-sum: only in games like chess. Real world never "strictly zero-sum" (Example: two girls compete to win the heart of the same guy). But: Unfortunately many encounters are perceived as zero sum games.

The Prisoner’s Dilemma

- Two criminals are held in separate cells (no communication):
 1. One confesses and the other does not \rightarrow confessor is freed and the other gets 3 years
 2. Both confess \rightarrow each gets 2 years
 3. Neither confesses \rightarrow both get 1 year

- Associations: Confess == D; Not Confess == C

- Payoff matrix

<table>
<thead>
<tr>
<th></th>
<th>i defects</th>
<th>i cooperates</th>
</tr>
</thead>
<tbody>
<tr>
<td>j defects</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>j cooperates</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

- Take place of prisoner (e.g. prisoner i) \rightarrow

 Course of Reasoning:

 - Suppose I cooperate: If j also cooperates \rightarrow we both get payoff 3. If j defects \rightarrow I get payoff 0. \rightarrow Best guaranteed payoff when I cooperate is 0
 - Suppose I defect: If j cooperates \rightarrow I get payoff 5. If j also defects \rightarrow both get payoff 2. \rightarrow Best guaranteed payoff when I defect is 2
 - \rightarrow If I defect I’ll get a minimum guaranteed payoff of 2. If I cooperate I’ll get a minimum guaranteed payoff of 0.
 - \rightarrow If prefer guaranteed payoff of 2 to guaranteed payoff of 0.
 \rightarrow I should defect
The Prisoner's Dilemma

\[\begin{align*}
\text{iD} & \quad \text{iC} \\
\text{jD} & \quad 2 & 2 & 5 & 0 \\
\text{jC} & \quad 0 & 5 & 3 & 3 \\
\end{align*}\]

\[\begin{align*}
\text{u}_i(D,D) = 2, & \quad \text{u}_i(D,C) = 5, & \quad \text{u}_i(C,D) = 0, & \quad \text{u}_i(C,C) = 3 \\
\text{u}_j(D,D) = 2, & \quad \text{u}_j(D,C) = 0, & \quad \text{u}_j(C,D) = 5, & \quad \text{u}_j(C,C) = 3 \\
\end{align*}\]

\[\begin{align*}
(D,C) & \succ_j (C,C) \succ_j (D,D) \succ_j (C,D) \\
(C,D) & \succ_j (C,C) \succ_j (D,D) \succ_j (D,C) \\
\end{align*}\]

Take place of prisoner (e.g. prisoner i) → Course of Reasoning:

- Suppose I cooperate: If \(j \) also cooperates → we both get payoff 3. If \(j \) defects → I get payoff 0. ⇒ Best guaranteed payoff when I cooperate is 0
- Suppose I defect: If \(j \) cooperates → I get payoff 5. If \(j \) also defects → both get payoff 2. ⇒ Best guaranteed payoff when I defect is 2
 - If I defect I’ll get a minimum guaranteed payoff of 2. If I cooperate I’ll get a minimum guaranteed payoff of 0.
 - If prefer guaranteed payoff of 2 to guaranteed payoff of 0. ⇒ I should defect

\[\begin{align*}
\text{iD} & \quad \text{iC} \\
\text{jD} & \quad 2 & 2 & 5 & 0 \\
\text{jC} & \quad 0 & 5 & 3 & 3 \\
\end{align*}\]

\[\begin{align*}
\text{u}_i(D,D) = 2, & \quad \text{u}_i(D,C) = 5, & \quad \text{u}_i(C,D) = 0, & \quad \text{u}_i(C,C) = 3 \\
\text{u}_j(D,D) = 2, & \quad \text{u}_j(D,C) = 0, & \quad \text{u}_j(C,D) = 5, & \quad \text{u}_j(C,C) = 3 \\
\end{align*}\]

\[\begin{align*}
(D,C) & \succ_j (C,C) \succ_j (D,D) \succ_j (C,D) \\
(C,D) & \succ_j (C,C) \succ_j (D,D) \succ_j (D,C) \\
\end{align*}\]

Take place of prisoner (e.g. prisoner i) → Course of Reasoning:

- Suppose I cooperate: If \(j \) also cooperates → we both get payoff 3. If \(j \) defects → I get payoff 0. ⇒ Best guaranteed payoff when I cooperate is 0
- Suppose I defect: If \(j \) cooperates → I get payoff 5. If \(j \) also defects → both get payoff 2. ⇒ Best guaranteed payoff when I defect is 2
 - If I defect I’ll get a minimum guaranteed payoff of 2. If I cooperate I’ll get a minimum guaranteed payoff of 0.
 - If prefer guaranteed payoff of 2 to guaranteed payoff of 0. ⇒ I should defect
The Prisoner’s Dilemma

- only one Nash equilibrium: \((D,D)\). (under the assumption that the other does D, one can do no better than do D)
- Intuition says: \((C,C)\) is better than \((D,D)\) so why not \((C,C)\)?
 \(\rightarrow\) but if player assumes that other player does C it is BEST to do D! \(\rightarrow\) seemingly „waste of utility“
- „shocking“ truth: defection is rational, cooperate is irrational
- Other prisoner’s dilemma: Nuclear arms reduction (D: do not reduce, C: reduce)

The shadow of the future: Iterated Prisoner’s Dilemma Game

- Game is played multiple times. Players can see all past actions of other player.
- Course of reasoning:
 - If I defect, the other player may punish me by defecting in the next run. (not a point in the one shot Prisoner’s Dilemma game)
 - Testing cooperation (and possibly getting the sucker’s payoff) is not tragic, because „on the long run“ one (or several) sucker’s payoff[s] is (are) „statistically“ not important (can e.g. be equaled by gains through mutual cooperation)
- \(\rightarrow\) in an iterated PD-game: cooperation is rational

- „Defect more rational than cooperate“ \(\rightarrow\) Humans: Machiavellism (opposed to real altruism)
- Philosophical question: isn’t even altruism ultimately some kind of optimization towards OWN goals?!
- Further aspect: Strict rationalism (in case of prisoner’s dilemma: defect) is usually only applied when sucker’s payoff really hurts.
- What we have not yet regarded: Multiple sequential games between same players \(\rightarrow\) „The shadow of the future“ \(\rightarrow\) What does it mean for rationalism and strategy?
Competing PD-strategies: Axelrod’s tournament (1980)

(1) Do not be envious: Not necessary to „beat“ opponent to do well

(2) Do not be first to defect: Cooperation is risky (sucker’s payoff) but overall, some losses do not count that much and cooperation may result in win-win-situations (C,C)

(3) Reciprocate C and D: TIT-FOR-TAT balances punishing and forgiving → encourages cooperation for other player. TIT-FOR-TAT is fair: retaliates exactly with the same amount of maliciousness as opponent

(4) Don't be too clever: TIT-FOR-TAT was simplest but won over programs with complex models of opponent’s strategies:

Other symmetric 2x2 Games

* „2x2“: two players, each with two actions; Symmetric:

\[(D,C) \succ_i (C,C) \succ_j (D,D) \succ_j (C,D)\]

\[(C,D) \succ_i (C,C) \succ_j (D,D) \succ_j (C,D)\]

• Other symmetric 2x2 games (There are 4!=24 such games):

<table>
<thead>
<tr>
<th>(D,C)</th>
<th>(C,C)</th>
<th>(D,D)</th>
<th>(C,D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D,C)</td>
<td>(C,C)</td>
<td>(D,D)</td>
<td>(C,D)</td>
</tr>
</tbody>
</table>

Prisoner’s Dilemma
Game of Chicken
Stag Hunt
Defection dominates
Defection dominates
Cooperation dominates
Cooperation dominates

• Two Nash equilibria: (D,D), (C,C)

(Stag Hunt)

Going back to J.J. Rousseau (1775)
Modern variant: You and a friend decide: good joke to appear both naked on a party. C: really do it; D: not do it

\[(C,C) \succ_i (D,C) \succ_j (D,D) \succ_j (C,D)\]

j:D 1 2 0
j:C 0 2 3

(Assuming the other does D you can do no better than do D Assuming the other does C you can do no better than do C)
Other symmetric 2x2 Games

Stag Hunt

- Going back to J.J. Rousseau (1775)

- Modern variant: You and a friend decide: good joke to appear both naked on a party. \(C: \) really do it; \(D: \) not do it

\[
(C, C) \succ_i (D, C) \succ_i (D, D) \succ_i (C, D)
\]

\[
\begin{array}{c|c|c}
j & D & C \\
\hline
i & 1 & 2 \\
\hline
C & 0 & 3 \\
\hline
\end{array}
\]

- Two Nash equilibria: \((D, D) \), \((C, C) \)
 (Assuming the other does \(D \) you can do no better than do \(D \)
 Assuming the other does \(C \) you can do no better than do \(C \))

Game of Chicken

- Going back to a James Dean film

- Modern variant: Gangster and hero drive cars directly towards each other \(C: \) steer away; \(D: \) not steer away

\[
(D, C) \succ_i (C, C) \succ_i (C, D) \succ_i (D, D)
\]

\[
\begin{array}{c|c|c}
j & D & C \\
\hline
i & 0 & 1 \\
\hline
C & 3 & 2 \\
\hline
\end{array}
\]

- Two Nash equilibria: \((D, C) \), \((C, D) \)
 (Assuming the other does \(D \) you can do no better than do \(C \)
 Assuming the other does \(C \) you can do no better than do \(D \))
Other symmetric 2x2 Games

Game of Chicken

- Going back to a James Dean film
- Modern variant: Gangster and hero drive cars directly towards each other C: steer away; D: not steer away

\[(D,C)\succ_i (C,C)\succ_i (C,D)\succ_i (D,D)\]

- Two Nash equilibria: (D,C), (C,D)
 (Assuming the other does D you can do no better than do C
 Assuming the other does C you can do no better than do D)

Notation: Strategic Form Games

- Set δ of players: \{1,2,..,1\}
 Example: \{1,2\}

- Player index: $i \in \delta$

- Pure Strategy Space S of player i
 Example: $S_i = \{U,M,D\}$ and $S_i = \{L,M,R\}$

- Strategy profile $s = (s_1,..,s_i)$ where each $s_i \in S_i$
 Example: (D, M)

- (Finite) space $S = \chi, S_i$ of strategy profiles $s \in S$
 Example: $S = \{(U,L), (U,M), ..., (D,R)\}$

- Payoff function $u_i: S \rightarrow \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$
 for player i of strategy profile $s \in S$
 Examples: $u_i((U,L)) = 4$, $u_i((U,U)) = 3$, $u_i((M,M)) = 8$

- Set of player i's opponents: "-i"
 Example: $-i = \{2\}$
Notation: Strategic Form Games

- Set \(\delta \) of players: \(\{1,2,\ldots, l\} \)

 Example: \(\{1,2\} \)

- Player index: \(i \in \delta \)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
</table>
 U | 4,3| 5,1| 6,2|
 M | 2,1| 8,4| 3,6|
 D | 3,0| 9,6| 2,8|

- Pure Strategy Space \(S_i \) of player \(i \)

 Example: \(S_i = \{U,M,D\} \) and \(S_j = \{L,M,R\} \)

- Strategy profile \(s = (s_1, \ldots, s_l) \) where each \(s_i \in S_i \)

 Example: \((D,M) \)

- (Finite) space \(S = \times_i S_i \) of strategy profiles \(s \in S \)

 Example: \(S = \{ (U,L), (U,M), \ldots, (D,R) \} \)

- Payoff function \(u_i : S \rightarrow \mathbb{R} \) gives von Neumann-Morgenstern-utility \(u_i(s) \) for player \(i \) of strategy profile \(s \in S \)

 Examples: \(u_i((U,L)) = 4 \), \(u_i((U,L)) = 3 \), \(u_i((M,M)) = 8 \)

 **Set of player \(i \)'s opponents: \(\sim i \)\)

 Example: \(i = \{2\} \)

Notation: Strategic Form Games

- Two Player zero sum game:

 \[\forall S : \sum_{i=1}^{2} u_i(s) = 0 \]

- Structure of game is common knowledge:
 all players know;
 all players know that all players know;
 all players know that all players know that all players know;

- Mixed strategy \(\sigma_i : S_i \rightarrow [0,1] \) Probability distribution over pure strategies (statistically independent for each player);

 Examples: \(\sigma_i(U) = 1/3 \), \(\sigma_i(M) = 2/3 \), \(\sigma_i(D) = 0 \);

 \(\sigma_i(U) = 2/3 \), \(\sigma_i(M) = 1/6 \), \(\sigma_i(D) = 1/6 \);

 Thus: \(\sigma_i(s_i) \) is the probability that player \(i \) assigns to strategy (action) \(s_i \)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
</table>
 U | 4,3| 5,1| 6,2|
 M | 2,1| 8,4| 3,6|
 D | 3,0| 9,6| 2,8|
Two Player zero sum game:
\[\forall S : \sum_{i=1}^{2} u_i(S) = 0 \]

Structure of game is common knowledge:
- all players know;
- all players know that all players know;
- all players know that all players know that all players know;

Mixed strategy \(\sigma_i : S_i \rightarrow [0,1] \) Probability distribution over pure strategies (statistically independent for each player);

Examples:
- \(\sigma_i(U)=1/3, \sigma_i(M)=2/3, \sigma_i(D)=0; \)
- \(\sigma'_i(U)=2/3, \sigma'_i(M)=1/6, \sigma'_i(D)=1/6; \)

Thus: \(\sigma_i(s_i) \) is the probability that player \(i \) assigns to strategy (action) \(s_i \)

Example: Rock Paper Scissors

<table>
<thead>
<tr>
<th></th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0,0</td>
<td>-1,1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Paper</td>
<td>-1,1</td>
<td>0,0</td>
<td>-1,1</td>
</tr>
<tr>
<td>Scissors</td>
<td>-1,1</td>
<td>-1,3</td>
<td>0,0</td>
</tr>
</tbody>
</table>

No pure NE, but mixed NE if both play \((1/3, 1/3, 1/3)\)
• Space of mixed strategies for player i: Σ_i
• Space of mixed strategy profiles: $\Sigma = \mathcal{X}_i \times \Sigma_i$
• Mixed strategy profile $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_i) \in \Sigma$
• Player i's payoff when a mixed strategy profile σ is played is
 $$\sum_{s \in S} \left(\prod_{j=1}^{f} \sigma_j(s_j) \right) u_i(s)$$
denoted as $u_i(\sigma)$, is a linear function of the σ_i
• A pure strategy of a player is a special mixed strategy of that player with one probability equal to 1 and all others equal to 0
Example:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_1(U) = 1/3, \ \sigma_1(M) = 1/3, \ \sigma_1(D) = 1/3)</td>
<td>U 4,3</td>
<td>5,1</td>
<td>6,2</td>
</tr>
<tr>
<td>(\sigma_2(L) = 0, \ \sigma_2(M) = 1/2, \ \sigma_2(R) = 1/2)</td>
<td>M 2,1</td>
<td>8,4</td>
<td>3,6</td>
</tr>
</tbody>
</table>

or short

\[
\sigma_1 = (1/3, 1/3, 1/3) \\
\sigma_2 = (0, 1/2, 1/2)
\]

We then have:

\[
u_1(\sigma_1, \sigma_2) = \frac{1}{3} (0 \cdot 4 + \frac{1}{3} \cdot 5 + \frac{1}{3} \cdot 6) + \frac{1}{3} (0 \cdot 2 + \frac{1}{3} \cdot 8 + \frac{1}{3} \cdot 3) + \frac{1}{3} (0 \cdot 3 + \frac{1}{3} \cdot 9 + \frac{1}{3} \cdot 2) = 11/2
\]

\[
u_2(\sigma_1, \sigma_2) = ... = 27/6
\]

Example:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_1(U) = 1/3, \ \sigma_1(M) = 1/3, \ \sigma_1(D) = 1/3)</td>
<td>U 4,3</td>
<td>5,1</td>
<td>6,2</td>
</tr>
<tr>
<td>(\sigma_2(L) = 0, \ \sigma_2(M) = 1/2, \ \sigma_2(R) = 1/2)</td>
<td>M 2,1</td>
<td>8,4</td>
<td>3,6</td>
</tr>
</tbody>
</table>

or short

\[
\sigma_1 = (1/3, 1/3, 1/3) \\
\sigma_2 = (0, 1/2, 1/2)
\]

We then have:

\[
u_1(\sigma_1, \sigma_2) = \frac{1}{3} (0 \cdot 4 + \frac{1}{3} \cdot 5 + \frac{1}{3} \cdot 6) + \frac{1}{3} (0 \cdot 2 + \frac{1}{3} \cdot 8 + \frac{1}{3} \cdot 3) + \frac{1}{3} (0 \cdot 3 + \frac{1}{3} \cdot 9 + \frac{1}{3} \cdot 2) = 11/2
\]

\[
u_2(\sigma_1, \sigma_2) = ... = 27/6
\]
Games in Strategic Form & Nash Equilibrium

- What is rational to do?
 - No matter what player 1 does: \(R \) gives player 2 a strictly higher payoff than \(M \).
 \(M \) is strictly dominated by \(R \)
 - \(U \rightarrow \) player 1 knows that player 2 will not play \(M \rightarrow U \) is better than \(M \) or \(D \)
 - \(M \rightarrow \) player 2 knows that player 1 knows that player 2 will not play \(M \rightarrow \) player 2 knows that player 1 will play \(U \rightarrow \) player 2 will play \(L \)
 - This elimination process: \(\text{iterated strict dominance} \)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>4,3</td>
<td>5,1</td>
<td>6,2</td>
</tr>
<tr>
<td>M</td>
<td>2,1</td>
<td>8,4</td>
<td>3,6</td>
</tr>
<tr>
<td>D</td>
<td>3,0</td>
<td>9,6</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

- What is rational to do?
 - No matter what player 1 does: \(R \) gives player 2 a strictly higher payoff than \(M \).
 \(M \) is strictly dominated by \(R \)
 - \(U \rightarrow \) player 1 knows that player 2 will not play \(M \rightarrow U \) is better than \(M \) or \(D \)
 - \(M \rightarrow \) player 2 knows that player 1 knows that player 2 will not play \(M \rightarrow \) player 2 knows that player 1 will play \(U \rightarrow \) player 2 will play \(L \)
 - This elimination process: \(\text{iterated strict dominance} \)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>4,3</td>
<td>5,1</td>
<td>6,2</td>
</tr>
<tr>
<td>M</td>
<td>2,1</td>
<td>8,4</td>
<td>3,6</td>
</tr>
<tr>
<td>D</td>
<td>3,0</td>
<td>9,6</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

- What is rational to do?
 - No matter what player 1 does: \(R \) gives player 2 a strictly higher payoff than \(M \).
 \(M \) is strictly dominated by \(R \)
 - \(U \rightarrow \) player 1 knows that player 2 will not play \(M \rightarrow U \) is better than \(M \) or \(D \)
 - \(M \rightarrow \) player 2 knows that player 1 knows that player 2 will not play \(M \rightarrow \) player 2 knows that player 1 will play \(U \rightarrow \) player 2 will play \(L \)
 - This elimination process: \(\text{iterated strict dominance} \)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>4,3</td>
<td>5,1</td>
<td>6,2</td>
</tr>
<tr>
<td>M</td>
<td>2,1</td>
<td>8,4</td>
<td>3,6</td>
</tr>
<tr>
<td>D</td>
<td>3,0</td>
<td>9,6</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

- What is rational to do?
 - No matter what player 1 does: \(R \) gives player 2 a strictly higher payoff than \(M \).
 \(M \) is strictly dominated by \(R \)
 - \(U \rightarrow \) player 1 knows that player 2 will not play \(M \rightarrow U \) is better than \(M \) or \(D \)
 - \(M \rightarrow \) player 2 knows that player 1 knows that player 2 will not play \(M \rightarrow \) player 2 knows that player 1 will play \(U \rightarrow \) player 2 will play \(L \)
 - This elimination process: \(\text{iterated strict dominance} \)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>4,3</td>
<td>5,1</td>
<td>6,2</td>
</tr>
<tr>
<td>M</td>
<td>2,1</td>
<td>8,4</td>
<td>3,6</td>
</tr>
<tr>
<td>D</td>
<td>3,0</td>
<td>9,6</td>
<td>2,8</td>
</tr>
</tbody>
</table>

- Is outcome dependent on elimination order?
 - No! If \(s_i \) is strictly worse than \(s_i' \) against opponent’s strategy in set \(D \) then \(s_i \) is strictly worse than \(s_i' \) against opponent’s strategy in any subset of \(D \)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>4, 3</td>
<td>5, 1</td>
<td>6, 2</td>
</tr>
<tr>
<td>M</td>
<td>2, 1</td>
<td>8, 4</td>
<td>3, 6</td>
</tr>
<tr>
<td>D</td>
<td>3, 0</td>
<td>9, 6</td>
<td>2, 8</td>
</tr>
</tbody>
</table>

- What is rational to do?
 - No matter what player 1 does: R gives player 2 a strictly higher payoff than M. „M is strictly dominated by R”
 - → player 1 knows that player 2 will not play M → U is better than M or D
 - → player 2 knows that player 1 knows that player 2 will not play M → player 2 knows that player 1 will play U → player 2 will play L
 - This elimination process: „iterated strict dominance”
 - Is outcome dependent on elimination order?

No! If s₁ is strictly worse than s₁’ against opponent’s strategy in set D then s₁ is strictly worse than s₁’ against opponent’s strategy in any subset of D

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>4, 3</td>
<td>5, 1</td>
<td>6, 2</td>
</tr>
<tr>
<td>M</td>
<td>2, 1</td>
<td>8, 4</td>
<td>3, 6</td>
</tr>
<tr>
<td>D</td>
<td>3, 0</td>
<td>9, 6</td>
<td>2, 8</td>
</tr>
</tbody>
</table>