Gaussian Mixture Models

- Fuzzy C-Means is “OK” as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches

- Example: Gaussian Mixture Models (GMM)
 - Linear combination of Gaussians
 \[p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^{K} \pi_k = 1, \ 0 \leq \pi_k \leq 1 \]
Gaussian Mixture Models

- Fuzzy C-Means is “OK” as a non-crisp clustering alg, but (as K-Means) favors spherical clusters \(\rightarrow \) better approaches

- Example: Gaussian Mixture Models (GMM)
 - Linear combination of Gaussians
 \[
p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^{K} \pi_k = 1, \quad 0 \leq \pi_k \leq 1
 \]

\[6\]
Gaussian Mixture Models

- Fuzzy C-Means is “OK” as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches

- Example: Gaussian Mixture Models (GMM)
 - Linear combination of Gaussians
 \[p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \Sigma_k) \] where \(\sum_{k=1}^{K} \pi_k = 1, \ 0 \leq \pi_k \leq 1 \)

 ![Graph showing Gaussian Mixture Models](image)

 Parameters to be estimated

 This is usually written as \(p(x|\Theta) \) denoting the dependency on the parameters \(\Theta = \{\pi_k, \mu_k, \Sigma_k\}_k \). Writing this as a conditional probability makes sense in connection with Bayesian Machine Learning (see [8]).
Gaussian Mixture Models

- Fuzzy C-Means is “OK” as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches

Example: Gaussian Mixture Models (GMM)

- Linear combination of Gaussians

\[
p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^{K} \pi_k = 1, \quad 0 \leq \pi_k \leq 1
\]

this is usually written as \(p(x|\theta) \) denoting the dependency on the parameters \(\theta = \{\pi_k, \mu_k, \Sigma_k\}_{k \in \{1, 2, \ldots, K\}} \)

Writing this as a conditional probability makes sense in connection with Bayesian Machine Learning (see [8])

For a distribution \(p(x|\theta) \) parametrized by a set of parameters \(\theta \) and iid data \(X = \{x_1, x_2, \ldots, x_N\} \), simple machine learning corresponds to finding the \(\theta \) that best explains the data

- iid: „identically independently drawn“ \(\Rightarrow p(X|\theta) = \prod_i p(x_i|\theta) \)

- \(p(X|\theta) \) is called likelihood

- „finding the \(\theta \) that best explains the data“:
 Maximum Likelihood: \(\theta_{ML} = \arg \max_{\theta} p(X|\theta) \) \(\Rightarrow \nabla_{\theta} p(X|\theta) = 0 \)

- convenient: use \(\log p(X|\theta) \) instead of \(p(X|\theta) \)
 \(\Rightarrow \log p(X|\theta) = \sum_i \log p(x_i|\theta) \)
For a distribution \(p(x|\theta) \) parametrized by a set of parameters \(\theta \) and iid data \(X = \{x_1, x_2, \ldots, x_N\} \), simple machine learning corresponds to finding the \(\hat{\theta} \) that best explains the data.

\[\text{iid: \text{"identically independently drawn"} } \Rightarrow \ p(X|\theta) = \prod_i p(x_i|\theta) \]

\(p(X|\theta) \) is called **likelihood**

"finding the \(\theta \) that best explains the data":

Maximum Likelihood: \(\hat{\theta}_{ML} = \arg \max_\theta p(X|\theta) \Rightarrow \forall \theta \ p(X|\theta) \leq p(X|\hat{\theta}_{ML}) \)

convenient: use \(\log p(X|\theta) \) instead of \(p(X|\theta) \)

\[\Rightarrow \ \log p(X|\theta) = \sum_i \log p(x_i|\theta) \]

For a distribution \(p(x|\theta) \) parametrized by a set of parameters \(\theta \) and iid data \(X = \{x_1, x_2, \ldots, x_N\} \), simple machine learning corresponds to finding the \(\hat{\theta} \) that best explains the data.

\[\text{iid: \text{"identically independently drawn"} } \Rightarrow \ p(X|\theta) = \prod_i p(x_i|\theta) \]

\(p(X|\theta) \) is called **likelihood**

"finding the \(\theta \) that best explains the data":

Maximum Likelihood: \(\hat{\theta}_{ML} = \arg \max_\theta p(X|\theta) \Rightarrow \forall \theta \ p(X|\theta) \leq p(X|\hat{\theta}_{ML}) \)

convenient: use \(\log p(X|\theta) \) instead of \(p(X|\theta) \)

\[\Rightarrow \ \log p(X|\theta) = \sum_i \log p(x_i|\theta) \]
For a distribution \(p(x|\theta) \) parametrized by a set of parameters \(\theta \) and iid data \(X = \{x_1, x_2, ..., x_N\} \), simple machine learning corresponds to finding the \(\theta \) that best explains the data.

\[
p(X|\theta) = \prod_x p(x|\theta)
\]

\(p(X|\theta) \) is called likelihood.

"finding the \(\theta \) that best explains the data":

Maximum Likelihood: \(\theta_{ML} = \text{argmax}_\theta p(X|\theta) \Rightarrow \nabla_\theta p(X|\theta) = 0 \)

Convenient: use \(\log p(X|\theta) \) instead of \(p(X|\theta) \)

\[
\log p(X|\theta) = \sum_i \log p(x_i|\theta)
\]

Example: \(x \in \mathbb{R}^n \) and \(p(x|\theta) \) is one multivariate Gaussian

\[
p(x|\theta) = \mathcal{N}(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D|\Sigma|^{1/2}}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
\]

\(\log \text{likelihood:} \quad (\text{see base e}) \)

\[
\ln p(X|\theta) = \ln p(X|\mu, \Sigma) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln |\Sigma| - \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu)
\]

Maximum log likelihood:

\[
\theta_{ML} = \text{argmax}_\theta \log p(X|\theta) \Rightarrow \nabla_\theta \left(\sum_i \log p(x_i|\theta) \right) = 0
\]

\[
\mu_{ML} = \frac{1}{N} \sum x_n
\]

\[
\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T
\]

\[
\theta_{ML} = \text{argmax}_\theta \log p(X|\theta) = \nabla_\theta \left(\sum_i \log p(x_i|\theta) \right) = 0
\]

\[
\mu_{ML} = \frac{1}{N} \sum x_n
\]

\[
\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T
\]
Example: $x \in \mathbb{R}^n$ and $p(x|\theta)$ is one multivariate Gaussian

$$p(x|\theta) = \mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

- **Log likelihood:** \(\log p(X|\theta) = \ln p(X|\mu, \Sigma) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln |\Sigma| - \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu) \)

- **Maximum log likelihood:**
 \[\Theta_{ML} = \arg\max_{\Theta} \log p(X|\Theta) \Rightarrow \forall_{\Theta} \left(\sum_{i} \log p(x_i|\theta) \right) = 0 \]
 \[\mu_{ML} : \frac{\partial}{\partial \mu} \ln p(X|\mu, \Sigma) = 0 \Rightarrow \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \]
 \[\Sigma_{ML} : \frac{\partial}{\partial \Sigma} \ln p(X|\mu, \Sigma) = 0 \Rightarrow \Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T \]
Example: $x \in \mathbb{R}^n$ and $p(x|\theta)$ is one multivariate Gaussian

$$p(x|\theta) = \mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right\}$$

- log likelihood: \((\text{base } e)\)

$$\ln p(X|\theta) = \ln p(X|\mu, \Sigma) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln |\Sigma| - \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1}(x_n - \mu)$$

- Maximum log likelihood:

$$\Theta_{ML} = \arg \max_{\theta} \log p(X|\theta) \Rightarrow \forall_{\theta} \left(\sum_i \log p(x_i|\theta) \right) = 0$$

$$\mu_{ML} : \frac{\partial}{\partial \mu} \ln p(X|\mu, \Sigma) = 0 \Rightarrow \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\Sigma_{ML} : \frac{\partial}{\partial \Sigma} \ln p(X|\mu, \Sigma) = 0 \Rightarrow \Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T$$

GMM: $p(x|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k), \quad 0 \leq \pi_k \leq 1, \quad \sum_{k=1}^{K} \pi_k = 1$
GMM: \(p(x|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \). \(0 \leq \pi_k \leq 1 \) \(\sum_{k=1}^{K} \pi_k = 1 \)

1 of K representation

- \(K \)-dimensional binary random variable \(z \)
- \(z_k \in \{0, 1\} \) and \(\sum_k z_k = 1 \)
- \(p(z_k = 1) = \pi_k \)
- \(p(z) = \prod_{k=1}^{K} \pi_k^z_k \)

conditional probability

\[
p(x|z_k = 1) = \mathcal{N}(x|\mu_k, \Sigma_k) \quad p(x|z) = \prod_{k=1}^{K} \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}
\]

\[
p(x) = \sum_z p(z)p(x|z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)
\]
GMM-Basics

\[p(x|\theta) = p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k). \quad 0 \leq \pi_k \leq 1 \quad \sum_{k=1}^{K} \pi_k = 1 \]

- **1 of K representation**
 - \(K \)-dimensional binary random variable \(z \)
 - \(z_k \in \{0, 1\} \) and \(\sum_{k} z_k = 1 \)
 - \(p(z_k = 1) = \pi_k \)
 - \(p(z) = \prod_{k=1}^{K} \pi_k^{z_k} \)

- **conditional probability**
 - \(p(x|z_k = 1) = \mathcal{N}(x|\mu_k, \Sigma_k) \)
 - \(p(x|z) = \prod_{k=1}^{K} \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k} \)
 - \(p(x) = \sum_{z} p(z)p(x|z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \)

- **GMM-Basics**

\[p(x|\theta) = p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k). \quad 0 \leq \pi_k \leq 1 \quad \sum_{k=1}^{K} \pi_k = 1 \]

- **1 of K representation**
 - \(K \)-dimensional binary random variable \(z \)
 - \(z_k \in \{0, 1\} \) and \(\sum_{k} z_k = 1 \)
 - \(p(z_k = 1) = \pi_k \)
 - \(p(z) = \prod_{k=1}^{K} \pi_k^{z_k} \)

- **conditional probability**
 - \(p(x|z_k = 1) = \mathcal{N}(x|\mu_k, \Sigma_k) \)
 - \(p(x|z) = \prod_{k=1}^{K} \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k} \)
 - \(p(x) = \sum_{z} p(z)p(x|z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \)
GMM:
\[p(x|\theta) = p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k), \quad 0 \leq \pi_k \leq 1 \sum_{k=1}^{K} \pi_k = 1 \]

1 of k representation

- \(K \)-dimensional binary random variable \(z \)
- \(z_k \in \{0, 1\} \) and \(\sum_k z_k = 1 \)
- \(p(z_k = 1) = \pi_k \)
- \(p(z) = \prod_{k=1}^{K} \pi_k^z_k \)

Remark:
If we have several observations \(x_1, \ldots, x_N \), then, because we have represented the marginal distribution in the form \(p(x) = \sum_z p(x|z)p(z) \), it follows that for every observed data point \(x_n \) there is a corresponding latent variable \(z_n \).

\[p(x) = \sum_z p(x|z)p(z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \]

Example:

Responsibilities

\[\gamma(z_k) \equiv p(z_k = 1|x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)} \]
\[= \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)} \]

Example:

Responsibilities

\[\gamma(z_k) \equiv p(z_k = 1|x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)} \]
\[= \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)} \]

Example:
GMM-Basics

- Responsibilities
\[\gamma(z_k) \equiv p(z_k = 1 | x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)} = \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)} \]

Example

- Responsibilities
\[\gamma(z_k) \equiv p(z_k = 1 | x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)} = \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)} \]

Example

GMM: \[p(x | \theta) = p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k). \quad 0 \leq \pi_k \leq 1 \quad \sum_{k=1}^{K} \pi_k = 1 \]

1 of k representation
\[K \text{-dimensional binary random variable } z_k \in \{0, 1\} \text{ and } \sum_k z_k = 1 \]
\[p(z_k = 1) = \pi_k \]
\[p(z) = \prod_{k=1}^{K} \pi_k^{z_k} \]

remark: If we have several observations \(x_1, \ldots, x_N \), then, because we have represented the marginal distribution in the form \(p(x) = \sum_{x} p(x,z) \), it follows that for every observed data point \(x_n \) there is a corresponding latent variable \(z_n \).
\[p(x) = \sum_{x} p(x|z)p(x|z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \]
\[p(x,z) \]
GMM-Basics

Maximum likelihood (GMM)

\[\ln p(X | \pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k) \right\} \]

- \(\text{Vector of } K \text{-dim. means } \mu_k \)
- \(\text{Vector of } K \text{-DxD covariances } \Sigma_k \)

- \(\text{maximizing w.r.t } \pi, \mu \text{ and } \Sigma \rightarrow \)
 \[\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) x_n \]
 \[\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk})(x_n - \mu_k)(x_n - \mu_k)^T \]
 \[(N_k = \sum_{n=1}^{N} \gamma(z_{nk})) \]
 \[\pi_k = \frac{N_k}{N} \]

\[\gamma(z_k) = p(z_k = 1 | x) = \frac{p(z_k = 1)p(x | z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x | z_j = 1)} = \frac{\pi_k N(x | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x | \mu_j, \Sigma_j)} \]

Example

(a) (b) (c)
Maximum likelihood (GMM)

\[
\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \Sigma_k) \right\}
\]

- Vector of \(K \) D-dim. means \(\mu_k \)
- Vector of \(K \) DxD covariances \(\Sigma_k \)

- maximizing w.r.t. \(\pi, \mu \) and \(\Sigma \) \(\rightarrow \)

\[
\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk})x_n \\
\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk})(x_n - \mu_k)(x_n - \mu_k)^T \\
\left(N_k = \sum_{n=1}^{N} \gamma(z_{nk}) \right) \\
\pi_k = \frac{N_k}{N}
\]

Example

![Example plots](image)

Maximum likelihood (GMM)

\[
\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \Sigma_k) \right\}
\]

- Vector of \(K \) D-dim. means \(\mu_k \)
- Vector of \(K \) DxD covariances \(\Sigma_k \)

- maximizing w.r.t. \(\pi, \mu \) and \(\Sigma \) \(\rightarrow \)

\[
\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk})x_n \\
\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk})(x_n - \mu_k)(x_n - \mu_k)^T \\
\left(N_k = \sum_{n=1}^{N} \gamma(z_{nk}) \right) \\
\pi_k = \frac{N_k}{N}
\]
Maximaler Likelihood (GMM)

\[\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \Sigma_k) \right\} \]

\[\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) x_n \]
\[\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk})(x_n - \mu_k)(x_n - \mu_k)^T \]
\[(N_k = \sum_{n=1}^{N} \gamma(z_{nk})) \]
\[\pi_k = \frac{N_k}{N} \]

so what?! \(\Rightarrow \) Problem: Expr. depend on \(\gamma(z_{nk}) \) which depends on \(\pi, \mu, \Sigma \) which depends on \(\gamma(z_{nk}) \) which depends on

Idea: Alternating approach (EM-algorithm):

Step t: Evaluate \(\gamma(z_{nk})_{(t)} \) using \((\pi, \mu, \Sigma)_{(t-1)}\)
Evaluate \((\pi, \mu, \Sigma)_{(t)}\) using \(\gamma(z_{nk})_{(t-1)}\)

so what?! \(\Rightarrow \) Problem: Expr. depend on \(\gamma(z_{nk}) \) which depends on \(\pi, \mu, \Sigma \) which depends on \(\gamma(z_{nk}) \) which depends on

Idea: Alternating approach (EM-algorithm):

Step t: Evaluate \(\gamma(z_{nk})_{(t)} \) using \((\pi, \mu, \Sigma)_{(t-1)}\)
Evaluate \((\pi, \mu, \Sigma)_{(t)}\) using \(\gamma(z_{nk})_{(t-1)}\)
GMM-Basics

Maximum likelihood (GMM)

$$\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(X_n|\mu_k, \Sigma_k) \right\}$$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk})(x_n - \mu_k)(x_n - \mu_k)^T$$

$$\left(N_k = \sum_{n=1}^{N} \gamma(z_{nk}) \right)$$

$$\pi_k = \frac{N_k}{N}$$

• so what?! ⇒ Problem: Expr. depend on $\gamma(z_{nk})$ which depends on π, μ, Σ which depends on $\gamma(z_{nk})$ which depends on

Idea: Alternating approach (EM-algorithm):

1. Step t: Evaluate $\gamma(z_{nk})_{(t)}$ using $(\pi, \mu, \Sigma)_{(t-1)}$
2. Evaluate $(\pi, \mu, \Sigma)_{(t)}$ using $\gamma(z_{nk})_{(t)}$

GMM-Basics

Maximum likelihood (GMM)

[Diagrams showing different distributions and likelihoods]
EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters (comprising the means and covariances of the components and the mixing coefficients).

1. Initialize the means μ_k, covariances Σ_k and mixing coefficients π_k, and evaluate the initial value of the log likelihood.

2. E step. Evaluate the responsibilities using the current parameter values

$$
\gamma(z_{nk}) = \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x_n | \mu_j, \Sigma_j)} \quad (9.23)
$$

Having latent variables Z, ML becomes

$$
\ln p(X|\theta) = \ln \left(\sum_z p(X, Z|\theta) \right)
$$

Summation inside $\ln \rightarrow$ Problems!

If we knew the complete dataset $\{X, Z\}$ (and thus the distribution $p(X, Z|\theta)$), we could use ML to solve for θ with $p(X, Z|\theta)$ directly (which is easy, as we will see, because $p(X, Z|\theta)$ is of exponential family (the functional form is known!!))

We only know $p(Z|X, \theta) \rightarrow$ responsibilities, as we will see \rightarrow compute expectation of (unknown) quantity $p(X, Z|\theta)$ or even better of the quantity $\ln p(X, Z|\theta)$
EM-algorithm: General View

- Having latent variables Z, ML becomes

$$
\ln p(X|\theta) = \ln \left\{ \sum_z p(X, Z|\theta) \right\}
$$

- Summation inside \ln → Problems!

- If we knew the complete dataset $\{X, Z\}$ (and thus the distribution $p(X, Z|\theta)$), we could use ML to solve for θ with $p(X, Z|\theta)$ directly (which is easy, as we will see, because $p(X, Z|\theta)$ is of exponential family (the functional form is known!))

- We only know $p(Z|X, \theta)$ (⇒ responsibilities, as we will see) → compute expectation of (unknown) quantity $p(X, Z|\theta)$ or even better of the quantity $\ln p(X, Z|\theta)$

GMM-Basics

Maximum likelihood (GMM)

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters (comprising the means and covariances of the components and the mixing coefficients).

1. Initialize the means μ_k, covariances Σ_k and mixing coefficients π_k, and evaluate the initial value of the log likelihood.
2. **E step.** Evaluate the responsibilities using the current parameter values

$$
\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_n|\mu_j, \Sigma_j)}.
$$

$$(9.23)$$

- **Example**

- Responsibilities

$$
\gamma(z_k) \equiv p(z_k = 1|x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)}
$$

$$
= \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)}.
$$

- **E step.** Evaluate the responsibilities using the current parameter values

$$
\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_n|\mu_j, \Sigma_j)}.
$$
EM-algorithm: General View

- Having latent variables \(Z\), ML becomes

\[
\ln p(X|\theta) = \ln \left\{ \sum_Z p(X, Z|\theta) \right\}
\]

- Summation inside \(\ln\) → Problems!

- If we knew the complete dataset \(\{X, Z\}\) (and thus the distribution \(p(X, Z|\theta)\)), we could use ML to solve for \(\theta\) with \(p(X, Z|\theta)\) directly (which is easy, as we will see, because \(p(X, Z|\theta)\) is of exponential family (the functional form is known!!))

\[
\ell_k
\]

- We only know \(p(Z|X, \theta)\) (→ responsibilities, as we will see) → compute expectation of (unknown) quantity \(p(X, Z|\theta)\) or even better of the quantity \(\ln p(X, Z|\theta)\)

EM-algorithm: General View

- Having latent variables \(Z\), ML becomes

\[
\ln p(X|\theta) = \ln \left\{ \sum_Z p(X, Z|\theta) \right\}
\]

- Summation inside \(\ln\) → Problems!

- If we knew the complete dataset \(\{X, Z\}\) (and thus the distribution \(p(X, Z|\theta)\)), we could use ML to solve for \(\theta\) with \(p(X, Z|\theta)\) directly (which is easy, as we will see, because \(p(X, Z|\theta)\) is of exponential family (the functional form is known!!))

- We only know \(p(Z|X, \theta)\) (→ responsibilities, as we will see) → compute expectation of (unknown) quantity \(p(X, Z|\theta)\) or even better of the quantity \(\ln p(X, Z|\theta)\)

EM: Relation to K-Means

- If we use \(k\) Gaussians with \(\Sigma = \sigma I\):

\[
p(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi\sigma)^{1/2}} \exp \left\{ -\frac{1}{2\sigma} ||x - \mu_k||^2 \right\}
\]

- we get for the responsibilities:

\[
\gamma(z_{nk}) = \frac{\pi_k}{\sum_j \pi_j \exp \left\{ -\frac{1}{2\sigma} ||x_n - \mu_j||^2 / 2\sigma \right\}}
\]

- Letting \(\sigma \rightarrow 0\) and Taylor-Expansion:

\[
E_Z[\ln p(X, Z|\mu, \Sigma, \pi)] \rightarrow -\frac{1}{2} \sum_{n=1}^N \sum_{k=1}^K r_{nk} ||x_n - \mu_k||^2 + \text{const}
\]

→ same as on slide 18
If we use
\[p(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^d/2} \exp \left\{ -\frac{1}{2\epsilon} \|x - \mu_k\|^2 \right\} \]
gamma(z_{nk}) = \frac{\pi_k \exp \left\{ -\|x_n - \mu_k\|^2/2\epsilon \right\}}{\sum_j \pi_j \exp \left\{ -\|x_n - \mu_j\|^2/2\epsilon \right\}}

Letting \(\epsilon \to 0 \) and Taylor-Expansion:

\[E_Z[\ln p(X, Z|\mu, \Sigma)] \to -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk}\|x_n - \mu_k\|^2 + \text{const} \]

→ same as on slide 18
Information Networks / Knowledge NW

Most studied examples: citation NW (tree), the WWW;

Example findings:
- $p(k)$ of author having k papers: $p(k) \sim k^{-\alpha}$: power law
- distribution of in or out degrees of WWW pages (also for citation NW): $p(k) \sim k^{-\alpha}$

Other examples:
- bipartite preference networks:
 - recommender systems == link prediction on these NW;
 - example: collaborative filtering
- ontologies, semantic NW
- word networks
- tripartite tag/author/item networks
 - Folksonomies

Information Networks / Knowledge NW

Most studied examples: citation NW (tree), the WWW;

Example findings:
- $p(k)$ of author having k papers: $p(k) \sim k^{-\alpha}$: power law
- distribution of in or out degrees of WWW pages (also for citation NW): $p(k) \sim k^{-\alpha}$

Other examples:
- bipartite preference networks:
 - recommender systems == link prediction on these NW;
 - example: collaborative filtering
- ontologies, semantic NW
- word networks
- tripartite tag/author/item networks
 - Folksonomies

Technological Networks

Most studied examples: distribution NW:
- the Internet,
- electric power grids,
- traffic NW (roads, railway tracks etc.)

Biological / Chemistry / Physics Networks

Most studied examples:
- biochemical pathways, gene-protein and protein-protein interaction NW
- nervous systems, vascular systems (also natural distribution NW),
- food NW, ecological dependency NW
Technological Networks

- Most studied examples: distribution NW:
 - the Internet,
 - electric power grids,
 - traffic NW (roads, railway tracks etc.)

Biological / Chemistry / Physics Networks

- Most studied examples:
 - biochemical pathways, gene-protein and protein-protein interaction NW
 - nervous systems, vascular systems (also natural distribution NW),
 - food NW, ecological dependency NW

Mean Average Path Length

- "Small World Effect": \(l(n) \sim \text{small} \Rightarrow l(n) \in O(\log(n)) \)
- undirected graph:

\[
\ell = \frac{1}{2} n(n+1) \sum_{i \geq j} d_{ij}.
\]

formula also counts 0 distances from i to i: \(\frac{1}{2} n(n+1) = \frac{1}{2} n(n-1) + n \)
- Expression allowing for disconnected components (where \(d_{ij} = \infty \) can occur): harmonic mean:

\[
\ell^{-1} = \frac{1}{2} n(n+1) \sum_{i \geq j} d_{ij}^{-1}.
\]

Mean Average Path Length

- "Small World Effect": \(l(n) \sim \text{small} \Rightarrow l(n) \in O(\log(n)) \)
- undirected graph:

\[
\ell = \frac{1}{2} n(n+1) \sum_{i \geq j} d_{ij}.
\]

formula also counts 0 distances from i to i: \(\frac{1}{2} n(n+1) = \frac{1}{2} n(n-1) + n \)
- Expression allowing for disconnected components (where \(d_{ij} = \infty \) can occur): harmonic mean:

\[
\ell^{-1} = \frac{1}{2} n(n+1) \sum_{i \geq j} d_{ij}^{-1}.
\]
Mean Average Path Length

- “Small World Effect”: $l(n) \text{“small”} \rightarrow l(n) \in O(\log(n))$
- undirected graph:
 \[\ell = \frac{1}{2}n(n+1) \sum_{i \geq j} d_{ij} \]
 formula also counts 0 distances from i to i: $\frac{1}{2} n(n+1) = \frac{1}{2} n(n-1) + n$
- Expression allowing for disconnected components (where $d_{ij} = \infty$ can occur): harmonic mean:
 \[\ell^{-1} = \frac{1}{2}n(n+1) \sum_{i \geq j} d_{ij}^{-1} \]

Transitivity / Clustering Coefficient

- Clustering coefficient (whole graph):
 \[C = C^{(1)} = \frac{\text{3x number of triangles in the network}}{\text{number of connected triples of vertices}} \]
 \[= \frac{6 \times \text{number of triangles in the network}}{\text{number of paths of length two}} \]

- Clustering coefficient (Watts-Strogatz-version, for node i):
 \[C_i = \frac{\text{number of triangles connected to vertex i}}{\text{number of triples centered on vertex i}} \]
 \[= \frac{|\{e_{ijk} \mid v_k, v_j \in N_i\}|}{k_i(k_i-1)} \]
 (see Introduction, k_i = degree of node i)

- Clustering coefficient (Watts-Strogatz-version, for whole graph):
 \[C = C^{(2)} = \frac{1}{n} \sum_i C_i \]
 mean of ratio instead of ratio of means

Transitivity / Clustering Coefficient

- Clustering coefficient (whole graph):
 \[C = C^{(1)} = \frac{\text{3x number of triangles in the network}}{\text{number of connected triples of vertices}} \]
 \[= \frac{6 \times \text{number of triangles in the network}}{\text{number of paths of length two}} \]

- Clustering coefficient (Watts-Strogatz-version, for node i):
 \[C_i = \frac{\text{number of triangles connected to vertex i}}{\text{number of triples centered on vertex i}} \]
 \[= \frac{|\{e_{ijk} \mid v_k, v_j \in N_i\}|}{k_i(k_i-1)} \]
 (see Introduction, k_i = degree of node i)

- Clustering coefficient (Watts-Strogatz-version, for whole graph):
 \[C = C^{(2)} = \frac{1}{n} \sum_i C_i \]
 mean of ratio instead of ratio of means