General “Definition”: Structural Index

- “Importance” has many aspects but minimal def. for centrality: Only depends on structure of graph.

- Structural Index: Let $G = (V,E,w)$ be a weighted directed or undirected multigraph. A function $s: V \rightarrow \mathbb{R}$ (or $s: E \rightarrow \mathbb{R}$) is a structural index iff

$$\forall x: G \cong H \rightarrow s_G(x) = s_H(\phi(x))$$

(Recall: Two graphs G and H are isomorphic ($G \cong H$) iff exists a bijective mapping $\phi: G \rightarrow H$ so that $(u,v) \in E$ iff $(\phi(u),\phi(v)) \in H$)

- structural index induces (total) partial-order (≤) on nodes/edges

- centrality can usually only be viewed as measured on an ordinal scale only (not interval or ratio scale)
General “Definition”: Structural Index

- Importance has many aspects but minimal def. for centrality: Only depends on structure of graph.

- **Structural Index**: Let $G = (V, E, w)$ be a weighted directed or undirected multigraph. A function $s: V \rightarrow \mathbb{R}$ (or $s: E \rightarrow \mathbb{R}$) is a structural index iff

$$\forall x: G \cong H \rightarrow s_G(x) = s_H(\phi(x))$$

(Recall: Two graphs G and H are isomorphic ($G \cong H$) iff exists a bijective mapping $\Phi: G \rightarrow H$ so that $(u, v) \in G$ iff $(\Phi(u), \Phi(v)) \in H$)

- structural index induces (total) partial-order (\preceq) on nodes/edges

- \rightarrow centrality can usually only be viewed as measured on an ordinal scale only (not interval or ratio scale)

Distance- and Neighborhood-based Centralities

- Centrality-measures defined on the basis of distances or neighbourhoods in the graph:

 Centrality of vertex \leftrightarrow “reachability” of a vertex

- **Neighborhoods: Degree Centrality**

 - Most basic: Degree centrality: $c(u) = \deg(u)$ (or $c(u) = \text{in-deg}(u)$ or $c(u) = \text{out-deg}(u)$) \rightarrow local measure

 - Applicable: If edges have “direct vote” semantics

Distances: Eccentricity

- **Eccentricity** $e(u) = \max\{d(u, v); v \in V\}$

- Center of a graph: Set of all nodes with minimum eccentricity

- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v); v \in V\}}$$

- \rightarrow nodes in the center of the graph have maximal centrality

Distances: Eccentricity

- **Eccentricity** $e(u) = \max\{d(u, v); v \in V\}$

- Center of a graph: Set of all nodes with minimum eccentricity

- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v); v \in V\}}$$

- \rightarrow nodes in the center of the graph have maximal centrality
Distances: Eccentricity

- **Eccentricity** \(e(u) = \max\{d(u,v); v \in V\} \)
- **Center** of a graph: Set of all nodes with minimum eccentricity

Eccentricity based centrality measure:
\[
c(u) = \frac{1}{e(u)} = \frac{1}{\max \{d(u,v); v \in V\}}
\]

- \(\rightarrow \) nodes in the center of the graph have maximal centrality 😊

Distances: Closeness

- **Eccentricity** \(e(u) = \max\{d(u,v); v \in V\} \)
- **Center** of a graph: Set of all nodes with minimum eccentricity

Eccentricity based centrality measure:
\[
c(u) = \frac{1}{e(u)} = \frac{1}{\max \{d(u,v); v \in V\}}
\]

- \(\rightarrow \) nodes in the center of the graph have maximal centrality 😊

Minumum problem: find nodes whose sum of distances to other nodes is minimal (⇒ service facility location problem): For all \(u \) minimize total sum of minimal distances \(\sum_{v \in V} d(u,v) \)

Social analog: Determine central figure for coordination tasks

Example:

- Example graph with \(\sum_{v \in V} d(u,v) \) values

- Example graph with \(e(u) \) values
Distances: Closeness

- Minimun problem: find nodes whose sum of distances to other nodes is minimal (→ service facility location problem). For all u minimize total sum of minimal distances \(\sum_{v \in \mathcal{V}} d(u,v) \)

- Social analog: Determine central figure for coordination tasks

- Example:

![Graph with \(\sum_{v \in \mathcal{V}} d(u,v) \) values]

```
36  26  24  22  32
```

Distances: Closeness

- Possible resulting centrality index: closeness:

\[
c(u) = \sum_{v \in \mathcal{V}} \frac{1}{d(u,v)}
\]

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality \(1/\infty \)

- Other possibility

\[
c(u) = \sum_{v \in \mathcal{V}} \left(\Delta_G + 1 - d(u,v) \right) \frac{1}{|\mathcal{V}| - 1}
\]

\(\Delta_G \) is the diameter of the graph

- If computed on directed graph: (set \(d(u,u) = 0 \) and set \(d(u,v) = 0 \) if \(u,v \) are unreachable via directed path → problematic!); using in-distances: „integration“, using out-distances „radiality“ (see [6])
Distances: Closeness

- Possible resulting centrality index: closeness:

\[c(u) = \frac{1}{\sum_{v \in \mathcal{V}} d(u,v)} \]

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality \(1/\infty\)

- Other possibility

\[c(u) = \frac{\sum_{v \in \mathcal{V}} (\Delta_G + 1 - d(u,v))}{|V| - 1} \]

\(\Delta_G\) is the diameter of the graph

- If computed on directed graph: (set \(d(u,u) = 0\) and set \(d(u,v) = 0\) if \(u, v\) are unreachable via directed path \(\rightarrow\) problematic \(\leftarrow\)); using in-distances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

- Possible resulting centrality index: closeness:

\[c(u) = \frac{1}{\sum_{v \in \mathcal{V}} d(u,v)} \]

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality \(1/\infty\)

- Other possibility

\[c(u) = \frac{\sum_{v \in \mathcal{V}} (\Delta_G + 1 - d(u,v))}{|V| - 1} \]

\(\Delta_G\) is the diameter of the graph

- If computed on directed graph: (set \(d(u,u) = 0\) and set \(d(u,v) = 0\) if \(u, v\) are unreachable via directed path \(\rightarrow\) problematic \(\leftarrow\)); using in-distances: "integration", using out-distances "radiality" (see [6])
Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?

Social Problem: Example: find “social ecological niche”

Formalization: For \(u, v : \gamma_u(v) = \text{number of vertices closer to } u \text{ than to } v \); if one salesman selects \(u \) and competitor selects \(v \) as locations, the first will have

\[
\gamma_u(v) + \frac{1}{2} (|V| - \gamma_u(v) - \gamma_u(u)) = \frac{1}{2} |V| + \frac{1}{2} (\gamma_u(v) - \gamma_u(u))
\]

customers
Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?

Social Problem: Example: find “social ecological niche”

Formalization: For $u, v : \gamma_u(v) =$ number of vertices closer to u than to v; if one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_u(v) + \frac{1}{2} (|V| - \gamma_u(v) - \gamma_v(u)) = \frac{1}{2} |V| + \frac{1}{2} (\gamma_u(v) - \gamma_v(u))$$

Customers

→ Competitor will want to minimize

$$f(u, v) = \gamma_u(v) - \gamma_v(u)$$

→ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_v \{ f(u, v) : v \in V / \{u\} \}$$

$c(u)$ is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor chooses v
Distances: Centroids

- Competitor will want to minimize
 \[f(u, v) = y_u(v) - y_u(u) \]

- **Possible centrality index:** First salesman knows the strategy of the competitor and calculates for each location the worst case:
 \[c(u) = \min_v \{ f(u, v) : v \in V \setminus \{u\} \} \]

- \(c(u) \) is called centroid value: measures the advantage of location \(u \) compared to other locations: Minimal loss of customers if he chooses \(u \) and a competitor chooses \(v \).

Shortest Paths: Shortest Path Betweenness

- Again assume that communication (workflows etc.) happen along shortest paths only. Let
 \[\delta_{ab}(v) = \frac{\sigma_{ab}(v)}{\sigma_{ab}} \]

 with \(\sigma_{ab} \): total number of shortest paths between nodes \(a \) and \(b \).

 Interpretation: Probability that \(v \) is involved in a communication between \(a \) and \(b \).

- **Shortest Path Betweenness (SPB) centrality** is then:
 \[c(v) = \sum_{a \in V} \sum_{b \in V} \delta_{ab}(v) \]

- **Interpretation:** Control that \(v \) exerts on the communication in the graph.

- Also applicable to disconnected graphs.

- Algorithm by Ulrik Brandes computes SPB in \(O(|V||E| + |V|^2 \log |V|) \) time.
Shortest Paths: Shortest Path Betweenness

- Define c_{SPB} for edges analogously:
 \[c(e) = \sum_{v \in V} \sum_{b \in V} \delta_{ab}(e) \]

- **Possible:** Interpret quantity $\delta_{ab}(v)$ as general relative information flow through v ("rush")

- **Other variants:** Instead of shortest paths between a and b regard:
 - the set of all paths
 - the set of the k-shortest paths (interesting for social case; choose small k)
 - the set of the k-shortest node disjoint paths
 - the set of paths not longer than $(1+\varepsilon)d(a,b)$

Deriving edge centralities from vertex centralities

- **What we have seen so far:** Various centrality measures mostly for vertices (based on degree, closeness, betweenness)

- **→ Formal way to translate a given vertex centrality index to a corresponding edge centrality:** Apply the given vertex centrality to a transformed version of G, the edge graph

- Given original $G = (V,E)$ then the **edge graph** $G' = (E,K)$ is defined by taking original edges as vertices. Two original edges are connected in G' if they are originally incident to the same original node.

- **Size of G'** may be quadratic (w.r.t. number of nodes) compared to G

Deriving edge centralities from vertex centralities

- **Remember:** Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e;

- **→ Upper Example:** G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is 0.

- **→ Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes**

- **→ Introduce incidence graph G'':** Each original edge is split by new “edge vertex” that represents the edge → Now vertex indices can be applied, preserving the intuition.
Deriving edge centralities from vertex centralities

- **Remember**: Vertex stress centrality for node \(x \): Number of shortest paths that use \(x \); Straightforward version for edge \(e \): Number of shortest paths that use \(e \);

- **Upper Example**: \(G \): Stress centrality of edge \(a \) would be 3; But in edge graph \(G' \) stress centrality of original edge \(a \) (now a node) is 0.

- **Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes**

- **Introduce incidence graph \(G'' \)**: Each original edge is split by new "edge vertex" that represents the edge \(\rightarrow \) Now vertex indices can be applied, preserving the intuition.

Vitality

- **Intuition**: Measure importance of vertex (or edge) by the difference of a given quality measure \(q \) on \(G \) with or without the vertex (edge):

 - **Vitality** \(v(x) \) of graph element \(x \): \(v(x) = q(G) - q(G \setminus \{x\}) \)

- **Example 1 for quality measure \(q \): Flow**:

 - Given directed graph \(G \) with positive edge weights \(w \) modeling capacities. The flow \(f(s,t) \) from node \(s \) (source) to node \(t \) (sink) is defined as:

 \[
 f(s,t) = \sum_{e \in \text{Out-Edges of } s} \tilde{f}(e) - \sum_{e \in \text{In-Edges of } t} \tilde{f}(e)
 \]

 where the local flows \(\tilde{f} \) respect capacity constraints: \(0 \leq \tilde{f}(e) \leq w(e) \)

 and balance conditions:

 \[
 \forall v \in V \setminus \{s,t\}: \sum_{e \in \text{Out-Edges of } v} \tilde{f}(e) = \sum_{e \in \text{In-Edges of } v} \tilde{f}(e)
 \]
- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - \rightarrow Vitality $v(x)$ of graph element $x: v(x) = q(G) - q(G\setminus x)$

- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow $f(s,t)$ from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \text{Out-Edges of } s} \tilde{f}(e) - \sum_{e \in \text{In-Edges of } t} \tilde{f}(e)$$

where the local flows \tilde{f} respect capacity constraints: $0 \leq \tilde{f}(e) \leq w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\}: \sum_{e \in \text{Out-Edges of } v} \tilde{f}(e) = \sum_{e \in \text{In-Edges of } v} \tilde{f}(e)$$

- Computing a flow $f: E \rightarrow \mathbb{R}$ of maximum value (tweaking the local flows): $O(\log(|V|^2|E|))$ (Algorithm by Goldberg & Tarjan (see [2]))

- Now define quality measure by e.g.:

$$q(G) = \sum_{s,t \in V} \max f(s,t)$$

Vitality

- Computing a flow \(f : E \rightarrow \mathbb{R} \) of maximum value (tweaking the local flows): \(O(|V| |E| \log(|V|^2 |E|)) \) (Algorithm by Goldberg & Tarjan (see [2]))

- Now define quality measure by e.g.:

\[
q(G) = \sum_{s, t \in V} \max_I f(s, t)
\]

Vitality

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure \(q \) on \(G \) with or without the vertex (edge):

\[
\rightarrow \text{Vitality } v(x) \text{ of graph element } x : v(x) = q(G) - q(G\setminus\{x\})
\]

- Example 1 for quality measure \(q \): Flow:

 - Given directed graph \(G \) with positive edge weights \(w \) modeling capacities. The flow \(f(s, t) \) from node \(s \) (source) to node \(t \) (sink) is defined as:

\[
f(s, t) = \sum_{e \in \text{Out-Edges of } s} \tilde{f}(e) = \sum_{e \in \text{In-Edges of } t} \tilde{f}(e)
\]

 where the local flows \(\tilde{f} \) respect capacity constraints: \(0 \leq \tilde{f}(e) \leq w(e) \)

 and balance conditions:

\[
\forall v \in V \setminus \{s, t\} : \sum_{e \in \text{Out-Edges of } v} \tilde{f}(e) = \sum_{e \in \text{In-Edges of } v} \tilde{f}(e)
\]

Stress Centrality as Vitality

- Possible Interpretation: Distance \(d(v, w) \) represents costs to send message from \(v \) to \(w \)

- If \(x \) is a cut-vertex or bridge-edge \(\rightarrow \) Graph is disconnected after removal \(\rightarrow \) centrality cannot be computed.

- We had: stress centrality of \(v \) or \(e \) is equal to number of shortest paths through \(v \) or \(e \)

\[
c_{\text{stress}}(v) = \sum_{u \in \text{shortest-paths } v} \sum_{b \in \text{shortest-paths } v} \sigma_{ab}(v) \\
c_{\text{stress}}(e) = \sum_{a \in V \setminus v} \sum_{b \in V \setminus v} \sigma_{ab}(e)
\]

- Intuition: \(c_{\text{stress}}(v) \) seems to measure the number of shortest paths that would be lost if \(v \) wasn’t available any more

- Why can’t we directly use \(c_{\text{stress}} \) as a graph quality index to construct a vitality index?

\[
\rightarrow \text{Because actual number of shortest paths can INCREASE if e.g. edge is taken away}
\]
Stress Centrality as Vitality

- In order to define a vitality-like version of stress: Consider only those shortest paths that haven’t changed their length:

\[c_{\text{vitality}}(v, G) = c_{\text{stress}}(v, G) - c_{\text{stress}}(v, G \setminus \{v\}) \]

with

\[c_{\text{stress}}(v, G \setminus \{v\}) = \sum_{a \in \mathcal{A}, a \neq v} \sum_{b \in \mathcal{B}, b \neq v} \sigma_{ab}[d_G(a, b) = d_{G \setminus \{v\}}(a, b)] \]

(Iverson notation)

Critique on Betweenness Based Centralities

- major critique: Max-Flow betweenness centrality (suggested to counteract this drawback) may exhibit similar problems

- here: special Max-Flow betweenness centrality mfb:
 -- limit edge capacity to one
 -- mfb\((i)\) := maximum possible flow through \(i\) over all possible solutions to the s-t-maximum flow problem, averaged over all s and t.

(b) In calculations of flow betweenness, vertices A and B in this configuration will get high scores while vertex C will not.

Source: [5]
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

- flow of electric current in a resistor network; Vᵢ = voltage (potential) at vertex i

- Current Flow betweenness cfb centrality: cfb(i) := amount of current that flows through i in this setup, averaged over all s and t.

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

- flow of electric current in a resistor network; Vᵢ = voltage (potential) at vertex i

- Current Flow betweenness cfb centrality: cfb(i) := amount of current that flows through i in this setup, averaged over all s and t.
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

Kirchhoff’s point law (current conservation): total current flow in / out of node is zero:

\[\sum_j A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}, \]

if there is an edge between \(i \) and \(j \), otherwise,
\[A_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases} \]

\[\delta_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases} \]

one unit of current in

\[s \]

one unit of current out

\[\sum_j A_{ij} = k_i, \text{ the degree of vertex } i \]

\[\sum_j A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \quad \xrightarrow{\text{“Graph Laplacian”}} \quad (D - A) \cdot V = s \]

\(D \) is the diagonal matrix with elements \(D_{ii} = k_i \)

source vector \(s \) \[s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases} \]

\[V = (D - A)^{-1} \cdot s \]
\[\sum_j A_{ij} = k_i, \text{ the degree of vertex } i \]

\[\sum_j A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \quad \longrightarrow \quad \begin{bmatrix} D - A \end{bmatrix} \cdot \begin{bmatrix} V \end{bmatrix} = \begin{bmatrix} s \end{bmatrix} \]

"Graph Laplacian"

D is the diagonal matrix with elements \(D_{ii} = k_i \)

source vector \(s \)
\[s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise}. \end{cases} \]

\[V = (D_v - A_v)^{-1} \cdot s \]

\[(D - A) \cdot V = s \]

Laplacian is not invertible, \(\det = 0 \), because system of eq. is overdetermined \(\Rightarrow \) set one \(V_v = 0 \) and measure voltages relative to \(v \). \(\Rightarrow \) remove the \(v \)-th row and column (since \(V_v = 0 \)) \(\Rightarrow \) now invertible

\[V = (D_v - A_v)^{-1} \cdot s \quad \text{(matrix inversion: } O(n^3)) \]

let us now add a \(v \)-th row and column back into \((D_v - A_v)^{-1} \) with values all equal to zero.

The resulting matrix we will denote \(T \).

\[V^{(st)} = T_{is} - T_{it} \]

\[\text{current flow at node } i: \quad I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}| \]
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

\[(D - A) \cdot V = s\]

Laplacian is not invertible, det = 0, because system of eq. is over determined \(\Rightarrow \) set one \(V_\nu = 0 \) and measure voltages relative to \(v \). \(\Rightarrow \) remove the \(v \)-th row and column (since \(V_v = 0 \)) \(\Rightarrow \) now invertible

\[V = (D_v - A_v)^{-1} \cdot s\] (matrix inversion: \(O(n^3) \))

Let us now add a \(\nu \)-th row and column back into \((D_v - A_v)^{-1}\) with values all equal to zero.
The resulting matrix we will denote \(T \).

\[V_i^{(st)} = T_{is} - T_{it} \]

\[\text{current flow at node } i: \quad I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}| \]

\[\text{current flow at node } i: \quad I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}| \]

\[\text{unit current flow at nodes } s \text{ and } t: \quad I_s^{(st)} = 1, \quad I_t^{(st)} = 1. \]

\[\text{cfsb}(i) \text{ (denoted as } b_i \text{) is then:} \]

\[b_i = \frac{\sum_{s < t} I_i^{(st)}}{\frac{1}{2} n(n - 1)} \]

Example ([5])

Network 1

Network 2

<table>
<thead>
<tr>
<th>network</th>
<th>betweenness measure</th>
<th>shortest-path</th>
<th>max-flow</th>
<th>random walk</th>
<th>current flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network 1: vertices A & B</td>
<td>0.636</td>
<td>0.631</td>
<td>0.670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertex C</td>
<td>0.200</td>
<td>0.282</td>
<td>0.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertices X & Y</td>
<td>0.200</td>
<td>0.068</td>
<td>0.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network 2: vertices A & B</td>
<td>0.265</td>
<td>0.269</td>
<td>0.321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertex C</td>
<td>0.243</td>
<td>0.004</td>
<td>0.267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertices X & Y</td>
<td>0.125</td>
<td>0.024</td>
<td>0.194</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example ([5])

<table>
<thead>
<tr>
<th>Network</th>
<th>Betweenness Measure</th>
<th>Shortest-Path</th>
<th>Max-Flow</th>
<th>Random Walk / Current-Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network 1: vertices A & B</td>
<td>0.636</td>
<td>0.631</td>
<td>0.670</td>
<td></td>
</tr>
<tr>
<td>vertex C</td>
<td>0.200</td>
<td>0.282</td>
<td>0.333</td>
<td></td>
</tr>
<tr>
<td>vertices X & Y</td>
<td>0.200</td>
<td>0.068</td>
<td>0.269</td>
<td></td>
</tr>
<tr>
<td>Network 2: vertices A & B</td>
<td>0.265</td>
<td>0.269</td>
<td>0.321</td>
<td></td>
</tr>
<tr>
<td>vertex C</td>
<td>0.243</td>
<td>[0.004]</td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>vertices X & Y</td>
<td>0.125</td>
<td>0.024</td>
<td>0.194</td>
<td></td>
</tr>
</tbody>
</table>