Title: profile1 (18.07.2013)
Date: Thu Jul 18 11:18:37 CEST 2013
Duration: 92:32 min
Pages: 81

Notation: Strategic Form Games

- Set δ of players: $\{1,2,...,I\}$
 - Example: $\{1,2\}$
- Player index: $i \in \delta$
- Pure strategy space S_i of player i
 - Example: $S_i = \{U,M,D\}$ and $S_j = \{L,M,R\}$
- Strategy profile $s = (s_1,...,s_I)$ where each $s_i \in S_i$
 - Example: (D,M)
- (Finite) space $S = \times_i S_i$ of strategy profiles $s \in S$
 - Example: $S = \{U,LM,DR\}$
- Payoff function $u_i: S \rightarrow \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$ for player i of strategy profile $s \in S$
 - Examples: $u_i((U,L)) = 4$, $u_i((U,M)) = 3$, $u_i((M,M)) = 8$
- Set of player i's opponents: "-i"
 - Example: $-1 = \{2\}$
Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$; “other player’s strategies”
- Short notation: $(s'_1, s'_2) := (s_1, ..., s_i, s', s_{i+1}, ..., s_n)$
- Same for mixed strategies: $(\sigma'_1, \sigma'_2) := (\sigma_1, ..., \sigma_i, \sigma', \sigma_{i+1}, ..., \sigma_n)$

Definition:

- Pure strategy s_i is strictly dominated for player i if σ'_i exists so that $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_i \in S_i$
- ... weakly dominated:
 - $u_i(\sigma'_i, s_{-i}) \geq u_i(s_i, s_{-i})$ for all $s_i \in S_i$ (and > for at least one s_i)
- If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_i \in S_i$ we also have
 - $u_i(\sigma'_i, s_{-i}) > u_i(s_i, \sigma'_{-i})$ for all $\sigma'_{-i} \in S_{-i}$ because
 - $u_i(\sigma'_i, s_{-i})$ is a convex function of $u_i(\sigma'_i, s_{-i}), u_i(\sigma'_i, s'_{-i}), u_i(\sigma'_i, s''_{-i})$,...

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$; “other player’s strategies”
- Short notation: $(s'_1, s'_2) := (s_1, ..., s_i, s', s_{i+1}, ..., s_n)$
- Same for mixed strategies: $(\sigma'_1, \sigma'_2) := (\sigma_1, ..., \sigma_i, \sigma', \sigma_{i+1}, ..., \sigma_n)$

Definition:

- Pure strategy s_i is strictly dominated for player i if σ'_i exists so that $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_i \in S_i$
- ... weakly dominated:
 - $u_i(\sigma'_i, s_{-i}) \geq u_i(s_i, s_{-i})$ for all $s_i \in S_i$ (and > for at least one s_i)
- If $u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i})$ for all $s_i \in S_i$ we also have
 - $u_i(\sigma'_i, s_{-i}) > u_i(s_i, \sigma'_{-i})$ for all $\sigma'_{-i} \in S_{-i}$ because
 - $u_i(\sigma'_i, s_{-i})$ is a convex function of $u_i(\sigma'_i, s_{-i}), u_i(\sigma'_i, s'_{-i}), u_i(\sigma'_i, s''_{-i})$,...
More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$: “other player’s strategies”
 - Short notation: $(s', s_i) := (s_1, ..., s_{i-1}, s', s_{i+1}, ..., s_n)$
 - Same for mixed strategies: $(\sigma', \sigma_i) := (\sigma_1, ..., \sigma_{i-1}, \sigma', \sigma_{i+1}, ..., \sigma_n)$

Definition:

- Pure strategy s_i is strictly dominated for player if σ_i' exists so that $u_i(\sigma_i', s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$
- ... weakly dominated:
 - $u_i(\sigma_i', s_i) \geq u_i(s_i, s_i)$ for all $s_i \in S_i$ (and \geq for at least one s_i)
 - If $u_i(\sigma_i', s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$ we also have $u_i(\sigma_i', \sigma_i') > u_i(s_i, \sigma_i')$ because $u_i(\sigma_i', \sigma_i')$ is a convex function of $u_i(\sigma_i', s_i), u_i(\sigma_i', s'_i), u_i(\sigma_i', s''_i), ...$

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:

Definition:

- Pure strategy s_i is strictly dominated for player if σ_i' exists so that $u_i(\sigma_i', s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$
- ... weakly dominated:
 - $u_i(\sigma_i', s_i) \geq u_i(s_i, s_i)$ for all $s_i \in S_i$ (and \geq for at least one s_i)
 - If $u_i(\sigma_i', s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$ we also have $u_i(\sigma_i', \sigma_i') > u_i(s_i, \sigma_i')$ because $u_i(\sigma_i', \sigma_i')$ is a convex function of $u_i(\sigma_i', s_i), u_i(\sigma_i', s'_i), u_i(\sigma_i', s''_i), ...$

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:

Definition:

- Pure strategy s_i is strictly dominated for player if σ_i' exists so that $u_i(\sigma_i', s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$
- ... weakly dominated:
 - $u_i(\sigma_i', s_i) \geq u_i(s_i, s_i)$ for all $s_i \in S_i$ (and \geq for at least one s_i)
 - If $u_i(\sigma_i', s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$ we also have $u_i(\sigma_i', \sigma_i') > u_i(s_i, \sigma_i')$ because $u_i(\sigma_i', \sigma_i')$ is a convex function of $u_i(\sigma_i', s_i), u_i(\sigma_i', s'_i), u_i(\sigma_i', s''_i), ...$

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:

Definition:

- Pure strategy s_i is strictly dominated for player if σ_i' exists so that $u_i(\sigma_i', s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$
- ... weakly dominated:
 - $u_i(\sigma_i', s_i) \geq u_i(s_i, s_i)$ for all $s_i \in S_i$ (and \geq for at least one s_i)
 - If $u_i(\sigma_i', s_i) > u_i(s_i, s_i)$ for all $s_i \in S_i$ we also have $u_i(\sigma_i', \sigma_i') > u_i(s_i, \sigma_i')$ because $u_i(\sigma_i', \sigma_i')$ is a convex function of $u_i(\sigma_i', s_i), u_i(\sigma_i', s'_i), u_i(\sigma_i', s''_i), ...$
Games in Strategic Form & Nash Equilibrium

More Notation:
- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$: “other player’s strategies”
 - Short notation: $(s', s_i) := (s_1, ..., s_{i-1}, s_i, s_{i+1}, ..., s_n)$
 - Same for mixed strategies: $(\sigma', \sigma_i) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_n)$

Definition:
- Pure strategy s_i is strictly dominated for player if σ'_i exists so that
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$ (and $> \forall$ at least one s_i)
 - Weakly dominated:
 $u_i(\sigma'_i, s_i) \geq u_i(s'_i, s_i)$ for all $s_i \in S_i$ (and \forall at least one s_i)
 - If $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$ we also have
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $\sigma'_i \in S_i$ because
 $u_i(\sigma'_i, \sigma_i)$ is a convex function of $u_i(\sigma'_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma'_i, s''_i), ...$,

Games in Strategic Form & Nash Equilibrium

More Notation:
- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$: “other player’s strategies”
 - Short notation: $(s', s_i) := (s_1, ..., s_{i-1}, s_i, s_{i+1}, ..., s_n)$
 - Same for mixed strategies: $(\sigma', \sigma_i) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_n)$

Definition:
- Pure strategy s_i is strictly dominated for player if σ'_i exists so that
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$
 - Weakly dominated:
 $u_i(\sigma'_i, s_i) \geq u_i(s'_i, s_i)$ for all $s_i \in S_i$ (and \forall at least one s_i)
 - If $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$ we also have
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $\sigma'_i \in S_i$ because
 $u_i(\sigma'_i, \sigma_i)$ is a convex function of $u_i(\sigma'_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma'_i, s''_i), ...$

Games in Strategic Form & Nash Equilibrium

More Notation:
- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$: “other player’s strategies”
 - Short notation: $(s', s_i) := (s_1, ..., s_{i-1}, s_i, s_{i+1}, ..., s_n)$
 - Same for mixed strategies: $(\sigma', \sigma_i) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_n)$

Definition:
- Pure strategy s_i is strictly dominated for player if σ'_i exists so that
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$
 - Weakly dominated:
 $u_i(\sigma'_i, s_i) \geq u_i(s'_i, s_i)$ for all $s_i \in S_i$ (and \forall at least one s_i)
 - If $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$ we also have
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $\sigma'_i \in S_i$ because
 $u_i(\sigma'_i, \sigma_i)$ is a convex function of $u_i(\sigma'_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma'_i, s''_i), ...$

Games in Strategic Form & Nash Equilibrium

More Notation:
- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$: “other player’s strategies”
 - Short notation: $(s', s_i) := (s_1, ..., s_{i-1}, s_i, s_{i+1}, ..., s_n)$
 - Same for mixed strategies: $(\sigma', \sigma_i) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_n)$

Definition:
- Pure strategy s_i is strictly dominated for player if σ'_i exists so that
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$
 - Weakly dominated:
 $u_i(\sigma'_i, s_i) \geq u_i(s'_i, s_i)$ for all $s_i \in S_i$ (and \forall at least one s_i)
 - If $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$ we also have
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $\sigma'_i \in S_i$ because
 $u_i(\sigma'_i, \sigma_i)$ is a convex function of $u_i(\sigma'_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma'_i, s''_i), ...$

Games in Strategic Form & Nash Equilibrium

More Notation:
- Discussing player i’s strategy-options, holding other player’s options fixed:
 - $s_i \in S_i$: “other player’s strategies”
 - Short notation: $(s', s_i) := (s_1, ..., s_{i-1}, s_i, s_{i+1}, ..., s_n)$
 - Same for mixed strategies: $(\sigma', \sigma_i) := (\sigma_1, ..., \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, ..., \sigma_n)$

Definition:
- Pure strategy s_i is strictly dominated for player if σ'_i exists so that
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$
 - Weakly dominated:
 $u_i(\sigma'_i, s_i) \geq u_i(s'_i, s_i)$ for all $s_i \in S_i$ (and \forall at least one s_i)
 - If $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $s_i \in S_i$ we also have
 $u_i(\sigma'_i, s_i) > u_i(s'_i, s_i)$ for all $\sigma'_i \in S_i$ because
 $u_i(\sigma'_i, \sigma_i)$ is a convex function of $u_i(\sigma'_i, s_i), u_i(\sigma'_i, s'_i), u_i(\sigma'_i, s''_i), ...$

Examples:

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 3</td>
</tr>
<tr>
<td>M</td>
<td>-2, 0</td>
</tr>
<tr>
<td>D</td>
<td>0, 1</td>
</tr>
</tbody>
</table>
Games in Strategic Form & Nash Equilibrium

- What about dominated mixed strategies?
- Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated
- But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 3</td>
<td>-2, 0</td>
</tr>
<tr>
<td>M</td>
<td>-2, 0</td>
<td>1, 3</td>
</tr>
<tr>
<td>D</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

Example:
- U and M are not dominated by D for player 1
- But: Playing $\sigma_1 = (\frac{1}{3}, \frac{1}{3}, 0)$ gives expected utility $u_1(\sigma_1^*, \sigma^*) = -1/2$ no matter what 2 plays $\Rightarrow D (\sigma_D = (0, 0, 1))$ dominates σ_1

Games in Strategic Form & Nash Equilibrium

A note on rationality

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>8, 10</td>
<td>-100, 9</td>
</tr>
<tr>
<td>D</td>
<td>7, 6</td>
<td>6, 5</td>
</tr>
</tbody>
</table>

- Iterated strict dominance $\Rightarrow (U, L)$
- BUT: psychology \Rightarrow play D instead of U because "U is unsafe"
Games in Strategic Form & Nash Equilibrium

A note on rationality

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>8, 10</td>
<td>-100, 9</td>
</tr>
<tr>
<td>D</td>
<td>7, 6</td>
<td>6, 5</td>
</tr>
</tbody>
</table>

- Iterated strict dominance \rightarrow (U,L)
- BUT: psychology \rightarrow play D instead of U because "U is unsafe"

Game Theory \leftrightarrow Decision Theory

- Example

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 3</td>
<td>4, 1</td>
</tr>
<tr>
<td>D</td>
<td>0, 2</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

- If player 1 reduces his payoff for U by 2:
 - decision theory: no use
 - game theory: new iterated strict dominance \rightarrow (D,R)

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- Good's valuations: v_i; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i's utility: $u_i = v_i - r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: looses $\rightarrow u_i = 0$
 - could have bidden v_i as well
 - If $r_i \leq v_i$: wins $\rightarrow u_i = v_i - r_i$
 - could have bidden v_i as well

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- Good's valuations: v_i; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i's utility: $u_i = v_i - r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: looses $\rightarrow u_i = 0$
 - could have bidden v_i as well
 - If $r_i \leq v_i$: wins $\rightarrow u_i = v_i - r_i$
 - could have bidden v_i as well
Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- **Good’s valuations:** v_i ; Assume common knowledge for the moment
- **Bids:** s_i
- **Second price:**
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i’s utility: $u_i = v_i - r_i$; other players utility $= 0$
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: looses $\Rightarrow u_i = 0$
 - could have bid v_i as well
 - If $r_i \leq v_i$: wins $\Rightarrow u_i = v_i - r_i$
 - could have bid v_i as well

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- case $v_i < r_i < s_i$:
 - i wins $\Rightarrow u_i = v_i - r_i < 0$ (winner’s curse)
 - should have bid $v_i = r_i \Rightarrow u_i = 0$ at least
- case $s_i < v_i$: (underbidding)
 - If $r_i \leq s_i$ or $r_i \geq v_i$:
 - u_i is unchanged if he bids v_i instead of s_i
 - If $s_i < r_i < v_i$:
 - bidder forgoes positive winning chances by underbidding

Assumption of common knowledge may be dropped because bidding own valuation is weakly dominant for each player

Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- **Good’s valuations:** v_i ; Assume common knowledge for the moment
- **Bids:** s_i
- **Second price:**
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i’s utility: $u_i = v_i - r_i$; other players utility $= 0$
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: looses $\Rightarrow u_i = 0$
 - could have bid v_i as well
 - If $r_i \leq v_i$: wins $\Rightarrow u_i = v_i - r_i$
 - could have bid v_i as well

Assumption of common knowledge may be dropped because bidding own valuation is weakly dominant for each player
Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- \(s_i = r_i < v_i:\)
 - \(i\) wins \(\Rightarrow u_i = v_i - r_i < 0\) (winner's curse)
 \(\Rightarrow\) should have bid \(v_i = r_i\) \(\Rightarrow u_i = 0\) at least

- \(s_i < v_i:\) (underbidding)
 - If \(r_i \leq s_i\) or \(r_i \geq v_i:\)
 \(u_i\) is unchanged if he bids \(v_i\) instead of \(s_i\)
 - If \(s_i < r_i < v_i:\)
 bidder forgoes positive winning chances by underbidding

Assumption of common knowledge my be dropped because bidding own valuation is weakly dominant for each player

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player's strategy is optimal response to all other player's strategies:

 - Mixed strategy profile \(\sigma^*\) is Nash Equilibrium if
 for all \(i:\) \(u_i(\sigma^*_i, \sigma^{* -i}) \geq u_i(s_i, \sigma^{* -i})\) for all \(s_i \in S_i\)
 (Pure strategy profiles also possible \(\Rightarrow\) "pure strategy NE")

 - Strategy profile \(s^*\) is Strict Nash Equilibrium: if it is a NE and
 for all \(i:\) \(u_i(s^*_i, s^{* -i}) > u_i(s_i, s^{* -i})\) for all \(s_i \neq s^*_i\).
 Strict NE is necessarily a pure strategy NE by definition.
Nash Equilibrium

- Nash Equilibrium: strategy profile: each player’s strategy is optimal response to all other player’s strategies.

- Mixed strategy profile σ^* is Nash Equilibrium if

 for all i: $u_i(\sigma_{-i}^*, \sigma_{-i}^*) \geq u_i(s_i, \sigma_{-i}^*)$ for all $s_i \in S_i$

 (Pure strategy profiles also possible \Rightarrow "pure strategy NE")

- Strict Nash Equilibrium: if it is a NE and

 for all i: $u_i(s_{-i}^*, s_{-i}^*) > u_i(s_i, s_{-i}^*)$ for all $s_i \neq s_i^*$.

 Strict NE is necessarily a pure strategy NE by definition.
Nash Equilibrium

From previous slide: σ^* is Nash Equilibrium if for all i: $u_i(\sigma^*, \sigma_{-i}^*) \geq u_i(s_i, \sigma_{-i}^*)$ for all $s_i \in S_i$.

Expected utilities are "linear in the probabilities"

\rightarrow in NE def we must only check for pure alternatives s_i.

In a (non-degenerate) mixed strategy Nash Equilibrium a player must be (a priori) indifferent between all pure strategies to which he assigns positive probability (Indifference condition).

(we will analyze this in more depth later)
Nash Equilibrium

- From previous slide: \(\sigma^* \) is Nash Equilibrium if for all \(i \) \(u_i(\sigma^*, \sigma^*_{-i}) \geq u_i(s_i, \sigma^*_{-i}) \) for all \(s_i \in S_i \)
- Expected utilities are "linear in the probabilities"

 → In NE we must only check for pure alternatives \(s_i \)

 → In a (non-degenerate) mixed strategy Nash Equilibrium a player must be (a priori) indifferent between all pure strategies to which he assigns positive probability (Indifference condition)

 (we will analyze this in more depth later)

Nash Equilibrium: Example: Cournot Competition

- Cournot model: Duopoly. Each of two firms (players) i produces same good.
- Output levels \(q_i \) are chosen from sets \(Q_i \)
- Cost of production is \(c_i(q_i) \)
- Market price is \(p(q) = p(q_1 + q_2) \)
- Firm i's profit is then \(u_i(q_i, q_{-i}) = q_i p(q) - c_i(q_i) \)
- Cournot reaction functions \(r_1 : Q_2 \rightarrow Q_1 \) and \(r_2 : Q_1 \rightarrow Q_2 \) specify optimal reaction on output level of opponent

Games in Strategic Form & Nash Equilibrium

- Strict equilibria need not exist. However each finite strategy form game has a mixed strategy equilibrium.
- In NE no player has incentive to deviate from NE
- In reality: If rationality is "non-strict" (mistakes are made): deviations can occur
- If one round of elimination of strictly dominated strategies yields unique strategy profile, this strategy profile is a strict NE (unique)
- In NE positive probabilities may only be assigned to not-strictly dominated strategies (Otherwise profit may be increased by choosing a dominating strategy).
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- **Cournot model: Duopoly.** Each of two firms (players) i produces same good.
- Output levels \(q_i \) are chosen from sets \(Q_i \).
- Cost of production is \(c_i(q_i) \).
- Market price is \(p(q) = p(q_1 + q_2) \).
- Firm i’s profit is then \(u_i(q_1, q_2) = q_i p(q) - c_i(q_i) \).
- Cournot reaction functions \(r_1 : Q_2 \to Q_1 \) and \(r_2 : Q_1 \to Q_2 \) specify optimal reaction on output level of opponent.

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- **Cournot model: Duopoly.** Each of two firms (players) i produces same good.
- Output levels \(q_i \) are chosen from sets \(Q_i \).
- Cost of production is \(c_i(q_i) \).
- Market price is \(p(q) = p(q_1 + q_2) \).
- Firm i’s profit is then \(u_i(q_1, q_2) = q_i p(q) - c_i(q_i) \).
- Cournot reaction functions \(r_1 : Q_2 \to Q_1 \) and \(r_2 : Q_1 \to Q_2 \) specify optimal reaction on output level of opponent.

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. \(u_2(q_1, q_2) \) by solving \(\frac{d}{dq_2} u_2(q_1, q_2) = 0 \) which yields \(\frac{d}{dq_2} [q_2 p(q_1, q_2) - c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) q_2 - c_2'(q_2) = 0 \).
- Inserting \(r_2(q_1) \) for \(q_2 \):
 \[p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0 \]
 gives the defining equation for \(r_2(\cdot) \).
 (Analogous for \(r_1(\cdot) \).)
- The intersections of the functions \(r_2 \) and \(r_1 \) are the NE of the Cournot game.
- Example: Linear demand \(p(q) = \max(0, 1 - q) \); linear cost: \(c_i(q_i) = c q_i \);
 \[r_2(q_1) = 1/2 (1 - q_1 - c); \quad r_1(q_2) = 1/2 (1 - q_2 - c); \]
 \[\text{NE: } q^*_2 = r_2(q^*_1) = 1/3 (1 - c) = q^*_1 = r_1(q^*_2) \]
Nash Equilibrium: Example: Cournot Competition

Under certain reasonable assumptions (see [1]) we can maximize e.g. \(u_2(q_1, q_2) \) by solving \(\frac{d}{dq_2} u_2(q_1, q_2) = 0 \) which yields

\[
\frac{d}{dq_2} [q_2 p(q_1, q_2) - c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) q_2 - c_2'(q_2) = 0.
\]

Inserting \(r_2(q_1) \) for \(q_2 \)

\[
p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) r_2(q_1) - c_2'(r_2(q_1)) = 0
\]
gives the defining equation for \(r_2(\cdot) \).

(analogous for \(r_1(\cdot) \)).

The intersections of the functions \(r_2 \) and \(r_1 \) are the NE of the Cournot game.

Example: Linear demand \(p(q) = \max(0, 1-q) \); linear cost: \(c_i(q_i) = c q_i \):

\[
\rightarrow r_2(q_1) = \frac{1}{2} (1 - q_1 - c); \quad r_1(q_1) = \frac{1}{2} (1 - q_2 - c);
\]

\[
\rightarrow \text{NE: } q^*_2 = r_2(q^*_1) = 1/3 (1-c) = q^*_1 = r_1(q^*_2)
\]
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. $u_2(q_1, q_2)$ by solving $d/dq_2 \ u_2(q_1, q_2) = 0$ which yields

 $d/dq_2 \ [q_2 \ p(q_1, q_2) - c(q_2)] = p(q_1, q_2) + p'(q_2, q_2) q_2 - c'_2(q_2) = 0.$

 Inserting $r_2(q_1)$ for q_2

 $p(q_1 + r_2(q_1)) + p'(q_2 + r_2(q_2)) r_2(q_2) - c'_2(r_2(q_2)) = 0$

 gives the defining equation for $r_2(.)$.

 (analogous for $r_1(.)$).

- The intersections of the functions r_2 and r_1 are the NE of the Cournot game.

- Example: Linear demand $p(q) = \max(0, 1-q)$; linear cost: $c_i(q_i) = c q_i$:

 $r_2(q_2) = 1/2 (1- q_1 - c); \ r_1(q_1) = 1/2 (1- q_2 - c);$

 $\Rightarrow NE: q_2^* = 1/3 (1-c); q_1^* = 1/3 (1-c).$

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence-of Pure NE-Example

- Some games may have more than one pure strategy NE

- Not all games have a pure strategy NE:

 - Example: Matching pennies:

	H	T
H	1, -1	-1, 1
T	-1, 1	1, -1

- Reasoning: If player 2 plays $(1/2, 1/2)$ then player 1’s expected payoff is $1/2 \cdot 1 + 1/2 \cdot (-1) = 0$ when playing H and $1/2 \cdot 1 + 1/2 \cdot 1 = 0$ when playing T so player 1 is also indifferent.

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- Another example: Inspection game

 - Worker: work or shirk; Employer: Inspect or not inspect

	I	NI
S	0, -h	w, -w
W	w, v-h	w, v-w

- Reasoning: If worker 2 does not inspect then worker 1’s expected payoff is $w \cdot 1 + v \cdot 1 = w$ when playing S and $v \cdot 1 = v$ when playing W.
Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- Another example: Inspection game
 - Worker: work or shirk; Employer: Inspect or not inspect
 - Worker: working costs g, produces value v; gets wage w
 - Employer: Inspection costs h
 - We assume $w > g > h > 0$
 - If not inspect → worker shirks → better inspect → if inspect → worker always works → better not inspect → ...: No pure NE
 - Employer must randomize

If worker plays $(x, 1-x)$ and employer plays $(y, 1-y)$

Indifference condition in mixed strategy NE →

- For worker indifferent between S and W:
 - gain from shirking == expected income loss:
 \[
 0y + (1-y)w = y(w-g) + (1-y)(w-g)
 \]
 - $g = yw
 \[
 g = yw \rightarrow y = g/w
 \]

- For employer indifferent between I and NI:
 - inspection costs == expected wage savings:
 \[
 x(-h)+ (1-x)(v-w-h) = x(-w) + (1-x)(v-w)
 \]
 - $h = xw \rightarrow x = h/w

Games in Strategic Form & Nash Equilibrium
Nash Equilibrium: Non-Existence--of Pure NE-Example 2

- If worker plays \(x, 1-x\) and employer plays \(y, 1-y\)
- **Indifference condition** in mixed strategy NE →
 - For worker indifferent between \(S\) and \(W\):
gain from shirking = expected income loss:
 \[0y + (1-y)w = y(w-g) + (1-y)(w-g)\]
 \[\Rightarrow g = yw \Rightarrow y = g/w\]
 - For employer indifferent between \(I\) and \(NI\):
 inspection costs = expected wage savings:
 \[x(-h) + (1-x)(v-w-h) = x(-w) + (1-x)(v-w)\]
 \[\Rightarrow h = xw \Rightarrow x = h/w\]

<table>
<thead>
<tr>
<th></th>
<th>(I)</th>
<th>(NI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>0,-h</td>
<td>w,-w</td>
</tr>
<tr>
<td>(W)</td>
<td>(w-g, v-w-h)</td>
<td>(w-g, v-w)</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

- If worker plays \(x, 1-x\) and employer plays \(y, 1-y\)
- **Indifference condition** in mixed strategy NE →
 - For worker indifferent between \(S\) and \(W\):
gain from shirking = expected income loss:
 \[0y + (1-y)w = y(w-g) + (1-y)(w-g)\]
 \[\Rightarrow g = yw \Rightarrow y = g/w\]
 - For employer indifferent between \(I\) and \(NI\):
 inspection costs = expected wage savings:
 \[x(-h) + (1-x)(v-w-h) = x(-w) + (1-x)(v-w)\]
 \[\Rightarrow h = xw \Rightarrow x = h/w\]

<table>
<thead>
<tr>
<th></th>
<th>(I)</th>
<th>(NI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>0,-h</td>
<td>w,-w</td>
</tr>
<tr>
<td>(W)</td>
<td>(w-g, v-w-h)</td>
<td>(w-g, v-w)</td>
</tr>
</tbody>
</table>
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence—of Pure NE—Example 2

- If worker plays \(x, 1-x \) and employer plays \(y, 1-y \)
- Indifference condition in mixed strategy NE →
 - \(g = yw \rightarrow y = g/w \)
 - \(h = xw \rightarrow x = h/w \)

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
- Man & Woman; Ballet or Football

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Non-Existence—of Pure NE—Example 2

- If worker plays \(x, 1-x \) and employer plays \(y, 1-y \)
- Indifference condition in mixed strategy NE →
 - \(g = yw \rightarrow y = g/w \)
 - \(h = xw \rightarrow x = h/w \)
Nash Equilibrium: More than one NE

Another example: Battle of the sexes

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Another example: Game of chicken

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-1, 1</td>
<td>2, 1</td>
</tr>
<tr>
<td>W</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Nash Equilibrium: More than one NE

Another example: Battle of the sexes

- Two pure NE: (F,F) and (B,B)
- One mixed NE: Indifference condition
 - Let \(\sigma_1(F) = x \) and \(\sigma_1(B) = y \)
 - Player 1’s indifference:
 - \(0 + 2(1-y) = 1 y + 0(1-y) \) → \(y = \frac{2}{3} \)
 - Player 2’s indifference:
 - \(0 x + 2(1-x) = 1 x + 0(1-x) \) → \(x = \frac{2}{3} \)
 - Mixed NE: ((2/3, 1/3); (2/3, 1/3))

Another example: Game of chicken

- (same reasoning) → Mixed NE: ((1/2, 1/2); (1/2, 1/2))
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- **Another example: Battle of the sexes**
- Two pure NE: (F,F) and (B,B)
- One mixed NE: Indifference condition
 \[\sigma_i(F) = x \text{ and } \sigma_i(B) = 1-y \]
 Player 1's indifference:
 \[0 \cdot y + 2(1-y) = 1 \cdot y + 0(1-y) \Rightarrow y = 2/3 \]
 Player 2's indifference:
 \[0 \cdot x + 2(1-x) = 1 \cdot x + 0(1-x) \Rightarrow x = 2/3 \]
 Mixed NE: \((2/3, 1/3); (2/3, 1/3) \)

- **Another example: Game of chicken**
 (same reasoning) → Mixed NE: \((1/2, 1/2); (1/2, 1/2) \)

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

- **Another example: Battle of the sexes**
- Two pure NE: (F,F) and (B,B)
- One mixed NE: Indifference condition
 \[\sigma_i(F) = x \text{ and } \sigma_i(B) = 1-y \]
 Player 1's indifference:
 \[0 \cdot y + 2(1-y) = 1 \cdot y + 0(1-y) \Rightarrow y = 2/3 \]
 Player 2's indifference:
 \[0 \cdot x + 2(1-x) = 1 \cdot x + 0(1-x) \Rightarrow x = 2/3 \]
 Mixed NE: \((2/3, 1/3); (2/3, 1/3) \)

- **Another example: Game of chicken**
 (same reasoning) → Mixed NE: \((1/2, 1/2); (1/2, 1/2) \)

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of „focalness“ of NE („focal points“): Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: \((C,C) \) and \((D,D) \); \((C,C) \) is pareto-dominant → \((C,C) \) might be chosen if \(p(C)>0.5 \) BUT
- more than two players: ALL have to agree on \(C \) → \(p(C) > 0.5 \) → \(p(C) > 0.93 \) → \((D,D) \) „risk dominates“ \((C,C) \)
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of „focalness“ of NE („focal points“):
 Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant → (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C → p(C)>0.5 → p(C)>0.93 → (D;D) „risk dominates“ (C;C)

Hunt Stag (C) | Hunt Hare (D)
<table>
<thead>
<tr>
<th>Hunt</th>
<th>Stag (C)</th>
<th>Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stag (C)</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Hare (D)</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of „focalness“ of NE („focal points“):
 Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant → (C;C) might be chosen if p(C)>0.5 BUT
- more than two players: ALL have to agree on C → p(C)>0.5 → p(C)>0.93 → (D;D) „risk dominates“ (C;C)

Hunt Stag (C) | Hunt Hare (D)
<table>
<thead>
<tr>
<th>Hunt</th>
<th>Stag (C)</th>
<th>Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stag (C)</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Hare (D)</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: More than one NE

Risk Dominance / Pareto Optimality

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0,0,10</td>
<td>-5,-5,0</td>
</tr>
<tr>
<td>D</td>
<td>-5,-5,0</td>
<td>1,1,-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-2,-2,0</td>
<td>-5,-5,0</td>
</tr>
<tr>
<td>D</td>
<td>-5,-5,0</td>
<td>-1,-1,5</td>
</tr>
</tbody>
</table>

- Three player game: Two pure NE: (U,L,A) and (D,R,B); (and one mixed) ; (U,L,A) pareto-dominates (D,R,B)
- If player 3’s choice is fixed → Two player game → (D,R) is pareto-dominant → if players 1 and 2 expect A: coordinate on (D,R).
- → concept of “coalition proof eq.” (here (D,R,B))(see [1])

Mixed Nash Equilibrium: General Analysis for 2 x 2 Games

(see [2])

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Pure NE:** One cell → For A: cell’s payoff for A must be (weak) maximum over rows in that column For B: cell’s payoff for B must be (weak) maximum over column in that row
- **Example:** (U,R) is pure NE if \(a_{UR} \geq a_{DL} \) and \(b_{UR} \geq b_{UL} \)