- Basic scenario: Players simultaneously choose action to perform → result of the actions they select → outcome in discrete state space Ω
- outcome depends on the combination of actions
- Assume: each player has just two possible actions C ("cooperate") and D ("defect")
- Environment behavior given by state transformer function:
 $$\tau : \mathcal{A}_C \times \mathcal{A}_C \rightarrow \Omega$$
 Player i's action Player j's action

Examples for state transformer function

- $\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_3 \quad \tau(C, C) = \omega_4$
 (environment is sensitive to actions of both players)
- $\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_1 \quad \tau(C, D) = \omega_1 \quad \tau(C, C) = \omega_1$
 (Neither player has any influence in this environment.)
- $\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_1 \quad \tau(C, C) = \omega_2$
 (environment is controlled by j.)
Examples for state transformer function

- \(\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_3 \quad \tau(C, C) = \omega_4 \)
 (environment is sensitive to actions of both players)

- \(\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_1 \quad \tau(C, D) = \omega_1 \quad \tau(C, C) = \omega_1 \)
 (Neither player has any influence in this environment.)

- \(\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_1 \quad \tau(C, C) = \omega_2 \)
 (environment is controlled by \(j \).)

Rational Behavior

- **Assumption:** Environment is sensitive to actions of both players:
 \(\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_3 \quad \tau(C, C) = \omega_4 \)

- Assumption:
 \(u_i(\omega_1) = 1 \quad u_i(\omega_2) = 1 \quad u_i(\omega_3) = 4 \quad u_i(\omega_4) = 4 \)

 Utility functions:
 \(u_i(\omega_1) = 1 \quad u_i(\omega_2) = 4 \quad u_i(\omega_3) = 1 \quad u_i(\omega_4) = 4 \)

- **Short notation:**
 \(u_i(D, D) = 1 \quad u_i(D, C) = 1 \quad u_i(C, D) = 4 \quad u_i(C, C) = 4 \)

 \(u_j(D, D) = 1 \quad u_j(D, C) = 4 \quad u_j(C, D) = 1 \quad u_j(C, C) = 4 \)

- **\(\rightarrow \) player’s preferences:**
 (also in short notation):
 \(C, C \gtrsim_i C, D \quad \gtrsim_i D, C \gtrsim_i D, D \)
Rational Behavior

\[
\begin{align*}
 u_i(D, D) &= 1 & u_i(D, C) &= 1 & u_i(C, D) &= 4 & u_i(C, C) &= 4 \\
 u_j(D, D) &= 1 & u_j(D, C) &= 4 & u_j(C, D) &= 1 & u_j(C, C) &= 4
\end{align*}
\]

\[
C, C \succeq_i C, D \quad \succ_i D, C \succeq_i D, D \\
C, C \succeq_j D, C \quad \succ_j C, D \succeq_j D, D
\]

- "C" is the rational choice for i.
 (Because i (strongly) prefers all outcomes that arise through C over all outcomes that arise through D.)

- "C" is the rational choice for j.
 (Because j (strongly) prefers all outcomes that arise through C over all outcomes that arise through D.)

Dominant Strategies and Nash Equilibria

- With respect to "what should I do":
 If \(\Omega = \Omega_1 \cup \Omega_2 \) we say \(\Omega_1 \) weakly dominates \(\Omega_2 \) for player i if for player i every state (outcome) in \(\Omega_1 \) is preferable to or at least as good as every state in \(\Omega_2 \):

\[
\forall \omega_1 \forall \omega_2 : (\omega_1 \in \Omega_1 \land \omega_2 \in \Omega_2) \rightarrow \omega_1 \succeq_i \omega_2
\]

- If \(\Omega = \Omega_1 \cup \Omega_2 \) we say \(\Omega_1 \) strongly dominates \(\Omega_2 \) for player i if for player i every state (outcome) in \(\Omega_1 \) is preferable to every state in \(\Omega_2 \):

\[
\forall \omega_1 \forall \omega_2 : (\omega_1 \in \Omega_1 \land \omega_2 \in \Omega_2) \rightarrow \omega_1 \succ_i \omega_2
\]

Example:
\[
\begin{align*}
 \Omega &= \{\omega_1, \omega_2, \omega_3, \omega_4\} & \Omega_1 &= \{\omega_1, \omega_2\} \\
 \omega_1 \succ_i \omega_2 \succ_i \omega_3 \succ_i \omega_4 & \Omega_2 &= \{\omega_3, \omega_4\}
\end{align*}
\]

\(\Omega_1 \) strongly dominates \(\Omega_2 \) for player i.

Game theory notation: actions are called "strategies"

- Notation: \(s \) is the set of possible outcomes (states) when "playing strategy \(s \)" (executing action \(s \))

Example: if we have (as before):

\[
\tau(D, D) = \omega_1 \quad \tau(D, C) = \omega_2 \quad \tau(C, D) = \omega_3 \quad \tau(C, C) = \omega_4
\]

we have (from player i's point of view):

\[
D^* = \{\omega_1, \omega_2\} \quad C^* = \{\omega_3, \omega_4\}
\]

- Notation: "strategy \(s1 \) (strongly / weakly) dominates \(s2 \)" iff \(s1^* \) (strongly / weakly) dominates \(s2^* \)

- If one strategy strongly dominates the other → question what to do is easy. (do first)
The Prisoner’s Dilemma

- Two criminals are held in separate cells (no communication):
 1. One confesses and the other does not → confessor is freed and the other gets 3 years
 2. Both confess → each gets 2 years
 3. Neither confesses → both get 1 year

- Associations: Confess == D; Not Confess == C

- Payoff matrix

<table>
<thead>
<tr>
<th></th>
<th>i defects</th>
<th>i cooperates</th>
</tr>
</thead>
<tbody>
<tr>
<td>j defects</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>j cooperates</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

The Prisoner’s Dilemma

- Two criminals are held in separate cells (no communication):
 1. One confesses and the other does not → confessor is freed and the other gets 3 years
 2. Both confess → each gets 2 years
 3. Neither confesses → both get 1 year

- Associations: Confess == D; Not Confess == C

- Payoff matrix

<table>
<thead>
<tr>
<th></th>
<th>i defects</th>
<th>i cooperates</th>
</tr>
</thead>
<tbody>
<tr>
<td>j defects</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>j cooperates</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

The Prisoner’s Dilemma

- Two criminals are held in separate cells (no communication):
 1. One confesses and the other does not → confessor is freed and the other gets 3 years
 2. Both confess → each gets 2 years
 3. Neither confesses → both get 1 year

- Associations: Confess == D; Not Confess == C

- Payoff matrix

<table>
<thead>
<tr>
<th></th>
<th>i defects</th>
<th>i cooperates</th>
</tr>
</thead>
<tbody>
<tr>
<td>j defects</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>j cooperates</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Take place of prisoner (e.g., prisoner i) → Course of Reasoning:

- Suppose I cooperate: If j also cooperates → we both get payoff 3. If j defects → I get payoff 0. Best guaranteed payoff when I cooperate is 0

- Suppose I defect: If j cooperates → I get payoff 5. If j also defects → both get payoff 2. Best guaranteed payoff when I defect is 2

- If I defect I'll get a minimum guaranteed payoff of 2. If I cooperate I'll get a minimum guaranteed payoff of 0.

- If prefer guaranteed payoff of 2 to guaranteed payoff of 0.

- I should defect
The Prisoner’s Dilemma

\[u_i(D,D) = 2, \quad u_i(D,C) = 5, \quad u_i(C,D) = 0, \quad u_i(C,C) = 3 \]
\[u_j(D,D) = 2, \quad u_j(D,C) = 5, \quad u_j(C,D) = 0, \quad u_j(C,C) = 3 \]

\[(D,C) \succ_i (C,C) \succ_j (D,D) \succ_j (C,D)\]
\[(C,D) \succ_i (C,C) \succ_j (D,D) \succ_j (D,C)\]

- **Take place of prisoner (e.g. prisoner i)**
 - Course of Reasoning:
 - Suppose I cooperate: If j also cooperates → we both get payoff 3. If j defects → I get payoff 0. Best guaranteed payoff when I cooperate is 2.
 - Suppose I defect: If j cooperates → I get payoff 5. If j also defects → both get payoff 2. Best guaranteed payoff when I defect is 2.
 - If I defect I’ll get a minimum guaranteed payoff of 2. If I cooperate I’ll get a minimum guaranteed payoff of 0.
 - If prefer guaranteed payoff of 2 to guaranteed payoff of 0. I should defect.

The Prisoner’s Dilemma

\[u_i(D,D) = 2, \quad u_i(D,C) = 5, \quad u_i(C,D) = 0, \quad u_i(C,C) = 3 \]
\[u_j(D,D) = 2, \quad u_j(D,C) = 5, \quad u_j(C,D) = 0, \quad u_j(C,C) = 3 \]

\[(D,C) \succ_i (C,C) \succ_j (D,D) \succ_j (C,D)\]
\[(C,D) \succ_i (C,C) \succ_j (D,D) \succ_j (D,C)\]

- Only one Nash equilibrium: \((D,D)\). (Under the assumption that the other does D, one can do no better than do D^*)
- Intuition says: \((C,C)\) is better than \((D,D)\) so why not \((C,C)\)?
 - But if player assumes that other player does C it is BEST to do D! → seemingly „waste of utility“

- Shocking „truth“: defect is rational, cooperate is irrational.
- Other prisoner’s dilemma: Nuclear arms reduction (D: do not reduce, C: reduce)

The Prisoner’s Dilemma

- Two criminals are held in separate cells (no communication):
 1. One confesses and the other does not → confessor is freed and the other gets 3 years.
 2. Both confess → each gets 2 years.
 3. Neither confesses → both get 1 year.
- Associations: Confess = D; Not Confess = C
- Payoff matrix

<table>
<thead>
<tr>
<th></th>
<th>i defects</th>
<th>i cooperates</th>
</tr>
</thead>
<tbody>
<tr>
<td>j defects</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>j cooperates</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

„sucker’s payoff“
Other symmetric 2x2 Games

Stag Hunt

• Going back to J.J. Rousseau (1775)

• Modern variant: You and a friend decide: good joke to appear both naked on a party. C: really do it; D: not do it

\[(C, C) \succ_i (D, C) \succ_i (D, D) \succ_i (C, D)\]

\[
\begin{array}{c|cc}
 & i:D & i:C \\
\hline
j:D & 1 & 2 \\
j:C & 2 & 3 \\
\end{array}
\]

• Two Nash equilibria: (D,D), (C,C)
 (Assuming the other does D you can do no better than do D
 Assuming the other does C you can do no better than do C)

Other symmetric 2x2 Games

Game of Chicken

• Going back to a James Dean film

• Modern variant: Gangster and hero drive cars directly towards each other C: steer away; D: not steer away

\[(D, C) \succ_i (C, C) \succ_i (C, D) \succ_i (D, D)\]

\[
\begin{array}{c|cc}
 & i:D & i:C \\
\hline
j:D & 0 & 3 \\
j:C & 1 & 2 \\
\end{array}
\]

• Two Nash equilibria: (D,C), (C,D)
 (Assuming the other does D you can do no better than do C
 Assuming the other does C you can do no better than do D)

Notation: Strategic Form Games

- Set \(\delta\) of players: \(\{1, 2, \ldots, l\}\)
 Example: \(\{1, 2\}\)

- Player index: \(i \in \delta\)

- Pure strategy space \(S_i\) of player \(i\)
 Example: \(S_1 = \{U,M,D\}\) and \(S_2 = \{L,M,R\}\)

- Strategy profile \(s = (s_1, \ldots, s_l)\) where each \(s_i \in S_i\)
 Example: \((D,M)\)

- (Finite) space \(S = \times_i S_i\) of strategy profiles \(s \in S\)
 Example: \(S = \{(U,L), (U,M), \ldots, (D,R)\}\)

- Payoff function \(u_i: S \rightarrow \mathbb{R}\) gives von Neumann-Morgenstern-utility \(u_i(s)\) for player \(i\) of strategy profile \(s \in S\)
 Examples: \(u_1((U,L)) = 4\), \(u_1((L,L)) = 3\), \(u_1((M,M)) = 8\)

- Set of player \(i\)'s opponents: \(\sim i\)
 Example: \(-i = \{2\}\)
Notation: Strategic Form Games

- Set \mathcal{S} of players: \{1, 2, ..., n\}
 - Example: \{1, 2\}

- Player index: $i \in \mathcal{S}$

- Pure Strategy Space S_i of player i
 - Example: $S_i = \{L, M, D\}$ and $S_j = \{L, M, R\}$

- Strategy profile $s = (s_1, ..., s_n)$ where $s_i \in S_i$
 - Example: (D, M)

- (Finite) space $S = X \times S_i$ of strategy profiles $s \in S$
 - Example: $S = \{ (U, L), (U, M), ..., (D, R) \}$

- Payoff function $u_i: S \to \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$ for player i of strategy profile $s \in S$
 - Examples: $u_i((U, L)) = 4$, $u_i((U, L)) = 3$, $u_i((M, M)) = 8$, ...

- Set of player i's opponents: "-i"
 - Example: $-1 = \{2\}$

Notation: Strategic Form Games

- Set \mathcal{S} of players: \{1, 2, ..., n\}
 - Example: \{1, 2\}

- Player index: $i \in \mathcal{S}$

- Pure Strategy Space S_i of player i
 - Example: $S_i = \{L, M, D\}$ and $S_j = \{L, M, R\}$

- Strategy profile $s = (s_1, ..., s_n)$ where $s_i \in S_i$
 - Example: (D, M)

- (Finite) space $S = X \times S_i$ of strategy profiles $s \in S$
 - Example: $S = \{ (U, L), (U, M), ..., (D, R) \}$

- Payoff function $u_i: S \to \mathbb{R}$ gives von Neumann-Morgenstern-utility $u_i(s)$ for player i of strategy profile $s \in S$
 - Examples: $u_i((U, L)) = 4$, $u_i((U, L)) = 3$, $u_i((M, M)) = 8$, ...

- Set of player i's opponents: "-i"
 - Example: $-1 = \{2\}$
Notation: Strategic Form Games

- **Two Player zero sum game:**
 \[\forall s : \sum_{i=1}^{2} u_i(s) = 0 \]

- **Structure of game is common knowledge:**
al all players know;
al all players know that all players know;
al all players know that all players know that all players know;

- **Mixed strategy** \(\sigma_i : S_i \rightarrow [0,1] \) Probability distribution over pure strategies (statistically independent for each player);
 Examples: \(\sigma_i(U) = 1/3, \sigma_i(M) = 2/3, \sigma_i(D) = 0 \);
 \(\sigma_i'(U) = 2/3, \sigma_i'(M) = 1/6, \sigma_i'(D) = 1/6 \);

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
</table>
 L | 4.3 | 5.1 | 6.2 |
 M | 2.1 | 8.4 | 3.6 |
 D | 3.0 | 9.6 | 2.8 |

Thus: \(\sigma_i(s_i) \) is the probability that player \(i \) assigns to strategy (action) \(s_i \).

Sense of Mixed Strategy Concept

- **Example: Rock Paper Scissors**

<table>
<thead>
<tr>
<th></th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0, 0</td>
<td>-1.1</td>
<td>1, 1</td>
</tr>
<tr>
<td>Paper</td>
<td>-1.1</td>
<td>0, 0</td>
<td>-1.1</td>
</tr>
<tr>
<td>Scissors</td>
<td>-1.1</td>
<td>1, -3</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- no pure NE, but mixed NE if both play (1/3, 1/3, 1/3)
• Space of mixed strategies for player i: \sum_i

• Space of mixed strategy profiles: $\Sigma = x_i \Sigma_i$

• Mixed strategy profile $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_i) \in \Sigma$

• Player i's payoff when a mixed strategy profile σ is played is

$$\sum_{\sigma \in \Sigma} \left(\prod_{j=1}^{f} \sigma_j(s_j) \right) u_i(s)$$

denoted as $u_i(\sigma)$, is a linear function of the σ_i

• A pure strategy of a player is a special mixed strategy of that player with one probability equal to 1 and all others equal to 0
Notation: Strategic Form Games

Example:
Let
\[
\sigma_1(U) = 1/3, \quad \sigma_1(M) = 1/3, \quad \sigma_1(D) = 1/3
\]
\[
\sigma_2(L) = 0, \quad \sigma_2(M) = 1/2, \quad \sigma_2(R) = 1/2
\]
or short
\[
\sigma_1 = (1/3, 1/3, 1/3)
\]
\[
\sigma_2 = (0, 1/2, 1/2)
\]
We then have:
\[
u_1(\sigma_1, \sigma_2) = \frac{1}{3} (0 \cdot 4 + \frac{1}{2} \cdot 5 + \frac{1}{2} \cdot 6)
+ \frac{1}{3} (0 \cdot 2 + \frac{1}{2} \cdot 8 + \frac{1}{2} \cdot 3)
+ \frac{1}{3} (0 \cdot 3 + \frac{1}{2} \cdot 9 + \frac{1}{2} \cdot 2) = 11/2
\]
\[
u_2(\sigma_1, \sigma_2) = \text{...} = 27/6
\]

Games in Strategic Form & Nash Equilibrium

- What is rational to do?
 - No matter what player 1 does: R gives player 2 a strictly higher payoff than M.
 „M is strictly dominated by R“
 - \(\rightarrow\) player 1 knows that player 2 will not play M \(\rightarrow\) U is better than M or D
 - \(\rightarrow\) player 2 knows that player 1 knows that player 2 will not play M \(\rightarrow\) player 2 knows that player 1 will play U \(\rightarrow\) player 2 will play L
 - This elimination process: „iterated strict dominance“
Games in Strategic Form & Nash Equilibrium

- **New example:**
 - Player 1: M not dominated by U and M not dominated by D
 - But: If Player 1 plays \(\sigma_1 = (1/2, 0, 1/2) \) he will get \(u(\sigma_1) = 1/2 \) regardless how player 2 plays
 - → a pure strategy may be dominated by a mixed strategy even if it is not strictly dominated by any pure strategy

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>2, 0</td>
<td>-1, 0</td>
</tr>
<tr>
<td>M</td>
<td>0, 0</td>
<td>0, 0</td>
</tr>
<tr>
<td>D</td>
<td>-1, 0</td>
<td>2, 0</td>
</tr>
</tbody>
</table>