"Esc" verwenden, um Vollansicht zu verlassen

"Esc" verwenden, um Vollansicht zu verlassen

"Esc" verwenden, um Vollansicht zu verlassen

"Esc" verwenden, um Vollansicht zu verlassen
$\text{P} \neq \text{NP}$?

NP

$\text{P} = \text{NP}$?

$\text{P} = \text{NP}$

NP

NP complete:
- NP-hard
- NP-hard
$P \neq \text{NP}$

NP complete:

NPhard

$\text{NP} \subseteq \text{NP}$

NP complete:

NPhard

\[L \in \text{NP} \]

\[\forall L' \in \text{NP} \quad L' \leq_{p} L \]
Cliquets: Algorithms

- Naive algorithm for finding the maximum clique: Exhaustive Search: Compute all subsets of V and check for clique \(\rightarrow O(n^2 2^n) \)
- Is there a slightly better algorithm? Yes: We can improve the exponential function’s base from 2 to approx. 1.38 (see [2])
- Can we expect to find the answer to the problem “how many cliques with exactly k nodes exist”? \(\rightarrow \) Exhaustive search: \(\Theta(|V|^k) \)
- For triangles we can be better than \(\Theta(|V|^2) \): An alg with \(O(|V|^{2.376}) \) exists \(\heartsuit \)
- For other k: An analogous technique allows for alg with \(O(|V|^{\beta(k)}) \) with \(\beta(k) < k \)

Cliquets: Enumeration

- Binary tree, n levels, leaves only at level n
- each level \(i \) \(\rightarrow \) vertex \(v_i \)
- nodes at level \(i \): maximal cliques in \(G[v_1, v_2, ..., v_i] \)
- level \(i + 1 \): determine children of node \(U \) at level \(i \) : two cases:
 1. \(v_{i+1} \) adjacent to all nodes in \(U \) \((U \subseteq N(v_{i+1})) \):
 - \(U \cup \{v_{i+1}\} \) is maximal clique in \(G[v_1, v_2, ..., v_i, v_{i+1}] \)
 - \(U \cup \{v_{i+1}\} \) is only child of \(U \)
 2. \(\exists \) vertex in \(U \) not adjacent to \(v_{i+1} \) \((U \not\subseteq N(v_{i+1})) \):
 - \(U \) itself is a maximal clique in \(G[v_1, v_2, ..., v_i, v_{i+1}] \)
 - if \((U - N[v_{i+1}]) \cup \{v_{i+1}\} \) is maximal it is also a maximal clique in \(G[v_1, v_2, ..., v_i, v_{i+1}] \)
 - \((U - N[v_{i+1}]) \cup \{v_{i+1}\} \) is potentially child of many nodes \(\rightarrow \) define it als child of lexicographically smallest clique (node) \(U' \) at level \(i \)
Clique: Enumeration

- Binary tree, n levels, leaves only at level n
- each level $i \leftrightarrow$ vertex v_i
- nodes at level i: maximal cliques in $G[v_{-1}, v_2, \ldots, v_i]$
- level $i+1$: determine children of node U at level i: two cases:
 1. v_{i+1} adjacent to all nodes in U ($\subseteq N(v_{i+1})$):
 - $U \cup \{v_{i+1}\}$ is maximal clique in $G[v_{-1}, v_2, \ldots, v_i, v_{i+1}]$
 - $U \cup \{v_{i+1}\}$ is only child of U
 2. \exists vertex in U not adjacent to v_{i+1} ($\not\subseteq N(v_{i+1})$):
 - U itself is a maximal clique in $G[v_{-1}, v_2, \ldots, v_i, v_{i+1}]$
 - if $(U - N(v_{i+1})) \cup \{v_{i+1}\}$ is maximal, it is also a maximal clique in $G[v_{-1}, v_2, \ldots, v_i, v_{i+1}]$
 - $(U - N(v_{i+1})) \cup \{v_{i+1}\}$ is potentially child of many nodes \rightarrow define it as child of lexicographically smallest clique (node) U' at level i

Clique: Enumeration

- Binary tree, n levels, leaves only at level n
- each level $i \leftrightarrow$ vertex v_i
- nodes at level i: maximal cliques in $G[v_{-1}, v_2, \ldots, v_i]$
- level $i+1$: determine children of node U at level i: two cases:
 1. v_{i+1} adjacent to all nodes in U ($\subseteq N(v_{i+1})$):
 - $U \cup \{v_{i+1}\}$ is maximal clique in $G[v_{-1}, v_2, \ldots, v_i, v_{i+1}]$
 - $U \cup \{v_{i+1}\}$ is only child of U
 2. \exists vertex in U not adjacent to v_{i+1} ($\not\subseteq N(v_{i+1})$):
 - U itself is a maximal clique in $G[v_{-1}, v_2, \ldots, v_i, v_{i+1}]$
 - if $(U - N(v_{i+1})) \cup \{v_{i+1}\}$ is maximal, it is also a maximal clique in $G[v_{-1}, v_2, \ldots, v_i, v_{i+1}]$
 - $(U - N(v_{i+1})) \cup \{v_{i+1}\}$ is potentially child of many nodes \rightarrow define it as child of lexicographically smallest clique (node) U' at level i
Clique: Enumeration

- Binary tree, n levels, leaves only at level n
- each level \(i \) → vertex \(v_i \)
- nodes at level \(i \): maximal cliques in \(G[v_1, v_2, \ldots, v_i] \)
- level \(i+1 \): determine children of node \(U \) at level \(i \): two cases:
 1. \(v_{i+1} \) adjacent to all nodes in \(U \) (\(U \subseteq N(v_{i+1}) \)):
 - \(U \cup \{v_{i+1}\} \) is maximal clique in \(G[v_1, v_2, \ldots, v_i, v_{i+1}] \)
 - \(U \cup \{v_{i+1}\} \) is only child of \(U \)
 2. \(\exists \) vertex in \(U \) not adjacent to \(v_{i+1} \) (\(U \cap N(v_{i+1}) = \emptyset \)):
 - \(U \) itself is a maximal clique in \(G[v_1, v_2, \ldots, v_i, v_{i+1}] \)
 - \(U \cup \{v_{i+1}\} \) is potentially child of many nodes → define it as child of lexicographically smallest clique (node) \(U' \) at level \(i \)

Clique: Enumeration

- tree constructed in principle
- Algorithm: traverse and construct tree depth first, output leaves
- necessary primitives:
 - Parent\((U, i)\): for node \(U \) at level \(i \) determine lexicographically smallest clique in \(G[v_1, v_2, \ldots, v_i, v_{i+1}] \) : \(O(mn) \)
 - LeftChild\((U, i)\): either \(U \) or \(U \cup \{v_{i+1}\} \) : \(O(mn) \)
 - RightChild\((U, i)\):
 - if case (1): no right child;
 - if case (2): if \(X := (U \cap N(v_{i+1})) \cup \{v_{i+1}\} \) is maximal (takes \(O(mn) \) time to determine) then \(X \) is right child if \(U = Parent(X, i+1) \) (takes \(O(mn) \))
- longest path between two leaves passes over \(2n-1 \) nodes; for each node: \(O(mn) \) time → maximal delay: \(O(n^2) \)
Cliques: Enumeration

- tree constructed in principle

Algorithm: traverse and construct tree depth first, output leaves

- necessary primitives:
 - `Parent(U,i)`: for node U at level i determine lexicographically smallest clique in $G[v_{-1}, v_0, ..., v_i, \ldots]$: $O(m+n)$
 - `LeftChild(U,i)`: either U or $U \cup \{v_{i+1}\}$: $O(m+n)$
 - `RightChild(U,i)`: if case (1): no right child; if case (2): if $X = (U - \mathcal{N}(v_{i+1})) \cup \{v_{i+1}\}$ is maximal (takes $O(m+n)$ time to determine) then X is right child if $U = \text{Parent}(X, i+1)$ (takes $O(m+n)$)

- longest path between two leaves passes over $2n-1$ nodes; for each node: $O(m+n)$ time \rightarrow maximal delay: $O(n^3)$

Cliques: Algorithms

- In connection with cliques: Algorithms with time complexity $O(|E| + |V|)$ for the problems:
 - Determine if $U \subseteq V$ is a clique (Test pairs of vertices of U if they are in E. Although up to $\binom{|V|}{2}$ such pairs may exist: If $|E|$ edges have been searched, search is over)
 - Determine if clique U is maximal (Test all vertices in $V\setminus U$ if they are connected to all vertices in U; again: If $|E|$ edges have been searched, search is over)
 - Compute lexicographically smallest maximal clique containing U: Assume vertices are sorted; Test all vertices in $V\setminus U$ in ascending order: if they are connected to all vertices in U, add to U; again: If $|E|$ edges have been searched, search is over)

Cliques: Enumeration

- tree constructed in principle

Algorithm: traverse and construct tree depth first, output leaves

- necessary primitives:
 - `Parent(U,i)`: for node U at level i determine lexicographically smallest clique in $G[v_{-1}, v_0, ..., v_i, \ldots]$: $O(m+n)$
 - `LeftChild(U,i)`: either U or $U \cup \{v_{i+1}\}$: $O(m+n)$
 - `RightChild(U,i)`: if case (1): no right child; if case (2): if $X = (U - \mathcal{N}(v_{i+1})) \cup \{v_{i+1}\}$ is maximal (takes $O(m+n)$ time to determine) then X is right child if $U = \text{Parent}(X, i+1)$ (takes $O(m+n)$)

- longest path between two leaves passes over $2n-1$ nodes; for each node: $O(m+n)$ time \rightarrow maximal delay: $O(n^3)$
Clique Enumeration

- Binary tree, n levels, leaves only at level n
- Each level $i \leftrightarrow$ vertex v_i
- Nodes at level i: maximal cliques in $G[v_1, v_2, ..., v_i]$
- Level $i+1$: determine children of node U at level i: two cases:
 1. v_{i+1} adjacent to all nodes in U ($U \subseteq N(v_{i+1})$):
 - $U \cup \{v_{i+1}\}$ is maximal clique in $G[v_1, v_2, ..., v_i, v_{i+1}]$
 - $U \cup \{v_{i+1}\}$ is only child of U
 2. v_{i+1} not adjacent to all nodes in U ($U \not\subseteq N(v_{i+1})$):
 - U itself is a maximal clique in $G[v_1, v_2, ..., v_i, v_{i+1}]$
 - If $(U - \overline{N}(v_{i+1})) \cup \{v_{i+1}\}$ is maximal, it is also a maximal clique in $G[v_1, v_2, ..., v_i, v_{i+1}]$
 - $(U - \overline{N}(v_{i+1})) \cup \{v_{i+1}\}$ is potentially child of many nodes

Plexes and Cores

- We have seen: Cliques are computationally hard but have certain desirable properties (closed under exclusion, nestedness) and perfectly fulfill requirements for groups
- We have seen: Distance based relaxations (N-cliques, N-clubs, N-clans) do not have these properties, do not fulfill the requirements for groups extremely well
- → look for other relaxations of the clique concept
- "Allow clique members to miss some (up to N) ties to other members"
 → N-Plex
- A subset $U \subseteq V$ is a N-Plex iff $\delta(G([U])) \geq |U| - N$

Plexes and Cores

- A N-Plex is maximal iff it is not strictly contained in another larger N-Plex; A N-Plex is a maximum N-Plex iff it has a maximum number of vertices among all N-Plexes in G
- N-Plexes are closed under exclusion; N-Plexes are nested → good candidates for social groups
- Furthermore: If the set of nodes V of G is an N-Plex we have:
 (Combinatorial Proof: see [2]):
 - If $N < (|V|+2) / 2$ then $diam(G) \leq 2$
 - If an N-Plex has a not too large "sloppyness" N "its" diameter is very small → Socially realistic
- → So far: wonderful but:
Plexes and Cores

But the decision problem NPLEX(G,k,N): “Does G contain an N-Plex of size at least k?” is \(\text{NP-complete for all } N \). Proof: Informal argument: CLIQUE(G,k)=NPLEX(G,k,1); formal: reduce CLIQUE(G,k) to N-PLEX (see [2]).

Ok, so (instead of fixing how many edges can be missed at most): why not demand a minimum degree for every node in the structure?

A subset \(U \subseteq V \) is a N-Core iff \(\delta(G([U])) \geq N \)

(Defs for maximal and maximum apply accordingly)

If U is N-core, U is also a \((|V|-N)\)-plex; Socially: If N is small compared to \(|U|\), N-cores are not very meaningful

Plexes and Cores

But the decision problem NPLEX(G,k,N): “Does G contain an N-Plex of size at least k?” is \(\text{NP-complete for all } N \). Proof: Informal argument: CLIQUE(G,k)=NPLEX(G,k,1); formal: reduce CLIQUE(G,k) to N-PLEX (see [2]).

Ok, so (instead of fixing how many edges can be missed at most): why not demand a minimum degree for every node in the structure?

A subset \(U \subseteq V \) is a N-Core iff \(\delta(G([U])) \geq N \)

(Defs for maximal and maximum apply accordingly)

If U is N-core, U is also a \((|V|-N)\)-plex; Socially: If N is small compared to \(|U|\), N-cores are not very meaningful
Plexes and Cores

- But the decision problem NPLEX(G,k,N): “Does G contain an N-Plex of size at least k?” is NP-complete for all N. Proof: Informal argument: CLIQUE(G,k)=NPLEX(G,k,1); formal: reduce CLIQUE(G,k) to N-PLEX (see [2]).
- Ok, so (instead of fixing how many edges can be missed at most): why not demand a minimum degree for every node in the structure?
- A subset \(U \subseteq V \) is a N-Core iff \(\delta(G([U])) \geq N \)\(^{1}\) (Defs for maximal and maximum apply accordingly)
- If \(U \) is N-core, \(U \) is also a \(|V|-N\)-plex; Socially: If \(N \) is small compared to \(|U|\), N-cores are not very meaningful

LS-Sets and Lambda Sets

- We will now look at some non-local concepts:
- LS-sets (Luccio-Sami-Sets): Formalize the paradigm “Intra-cluster coherence, inter-cluster decoherence”. An LS-set is a “network region where internal ties are more significant than external ties” [2] (extreme version of paradigm: “strong alliance”: complete component (disconnected clique))
- A subset \(U \subseteq V \) is a LS-set iff all proper subsets of \(U \) share more ties with the network outside than \(U \) does:
 \[
 U' \subset U \Rightarrow |E(U', V-U')| > |E(U, V-U)|
 \]
- LS-sets have some interesting properties (e.g. no trivial overlaps: if \(u_1 \cap u_2 \neq \emptyset \Rightarrow u_1 \cup u_2 \) or \(u_2 \cup u_1 \); min degree of LS set is at least half the number of outgoing edges) and may be good candidates for social groups (overlap property can be a counter argument)
- LS-sets can be computed with reasonable complexity ([2])

Plexes and Cores

- If \(U_1 \) and \(U_2 \) are N-cores, \(U_1 \cup U_2 \) is also an N-core; Socially: not very desirable; (math: maximum N-core is unique)
- If \(U_1 \) and \(U_2 \) are connected and maximal N-cores they are disjoint; Socially: not very desirable
- N-cores are not closed under exclusion (Example: cycle is 2-core but subset not) and are generally not nested
- N-cores need not be connected
- N-cores do not seem to be good candidates for social groups
- But: We can easily compute the maximum N-core (see [2])

LS-Sets and Lambda Sets

- We will now look at some non-local concepts:
- LS-sets (Luccio-Sami-Sets): Formalize the paradigm “Intra-cluster coherence, inter-cluster decoherence”. An LS-set is a “network region where internal ties are more significant than external ties” [2] (extreme version of paradigm: “strong alliance”: complete component (disconnected clique))
- A subset \(U \subseteq V \) is a LS-set iff all proper subsets of \(U \) share more ties with the network outside than \(U \) does:
 \[
 U' \subset U \Rightarrow |E(U', V-U')| > |E(U, V-U)|
 \]
- LS-sets have some interesting properties (e.g. no trivial overlaps: if \(u_1 \cap u_2 \neq \emptyset \Rightarrow u_1 \cup u_2 \) or \(u_2 \cup u_1 \); min degree of LS set is at least half the number of outgoing edges) and may be good candidates for social groups (overlap property can be a counter argument)
- LS-sets can be computed with reasonable complexity ([2])
LS-Sets and Lambda Sets

- We will now look at some non-local concepts:

- LS-sets (Lucio-Sami-Sets): Formalize the paradigm „Intra-cluster coherence, inter-cluster decoherence“: An LS-set is a „network region where internal ties are more significant than external ties“ [2] (extreme version of paradigm: „strong alliance“: complete component (disconnected clique))

- A subset $U \subseteq V$ is a LS-set iff all proper subsets of U share more ties with the network outside than U does:

$$U' \subset U \Rightarrow |E(U', V-U')| > |E(U, V-U)|$$

- LS-sets have some interesting properties (e.g., no trivial overlaps: if $u_1 \cap u_2 \neq \emptyset \Rightarrow u_1 \cup u_2$ or $u_2 \cup u_1$; min degree of LS set is at least half the number of outgoing edges) and may be good candidates for social groups (overlap property can be a counter argument)

- LS-sets can be computed with reasonable complexity ([2])

Recommended Reading

- minimal approach:
 - study the slides and mentally review the introduced concepts, definitions and connections

- standard approach:
 - minimal approach + read the corresponding parts of [2]

- interested students:
 - standard approach + read all of [2], studying also the proofs
Abstractly, the probability model for a classifier is a conditional model.

\[p(C|F_1, \ldots, F_k) \]

over a dependent class variable \(C \) with a small number of outcomes or classes, conditional on several feature variables \(F_1 \) through \(F_k \). The problem is that if the number of features \(k \) is large or when a feature can take on a large number of values, then having such a model on probability tables is infeasible. We therefore reformulate the model to make it more tractable.

Using Bayes theorem, this can be written

\[p(C|F_1, \ldots, F_k) = \frac{p(C)p(F_1, \ldots, F_k|C)}{p(F_1, \ldots, F_k)} \]

In plain English the above equation can be written as

\[\text{posterior} = \frac{\text{prior} \times \text{likelihood}}{\text{evidence}}. \]

In practice, there is retained only the numerator of that fraction, because the denominator does not depend on \(C \) and the values of the features \(F_j \) are given, so that the denominator is effectively constant. The numerator is equivalent to the joint probability model

\[p(C, F_1, \ldots, F_k) \]

which can be rewritten as follows, using the chain rule for repeated applications of the definition of conditional probability:

\[p(C, F_1, \ldots, F_k) = \frac{p(C)p(F_1, \ldots, F_k|C)}{p(F_1, \ldots, F_k)} \]

\[\propto p(C)p(F_1|C)p(F_2|F_1)p(F_3|F_2)p(F_4|F_3)p(F_5|F_4)p(F_6|F_5)p(F_7|F_6)p(F_8|F_7)p(F_9|F_8)p(F_{10}|F_9)p(F_{11}|F_{10}) \]

Now the "same" conditional independence assumptions come into play: assume that each feature \(F_j \) is conditionally independent of every other feature \(F_j \) \(j \neq i \) given the category \(C \). This means that

\[p(C, F_1, \ldots, F_k) = \frac{p(C)p(F_1|C)p(F_2|C)p(F_3|C)p(F_4|C)p(F_5|C)p(F_6|C)p(F_7|C)p(F_8|C)p(F_9|C)p(F_{10}|C)|p(F_{11}|C) \]

which can be rewritten as follows, using the chain rule for repeated applications of the definition of conditional probability:

\[p(C, F_1, \ldots, F_k) \]

\[\propto p(C)p(F_1|C)p(F_2|C)p(F_3|C)p(F_4|C)p(F_5|C)p(F_6|C)p(F_7|C)p(F_8|C)p(F_9|C)p(F_{10}|C)p(F_{11}|C) \]

Now the "same" conditional independence assumptions come into play: assume that each feature \(F_j \) is conditionally independent of every other feature \(F_j \) \(j \neq i \) given the category \(C \). This means that

\[p(C, F_1, \ldots, F_k) \]

\[\propto p(C)p(F_1|C)p(F_2|C)p(F_3|C)p(F_4|C)p(F_5|C)p(F_6|C)p(F_7|C)p(F_8|C)p(F_9|C)p(F_{10}|C)p(F_{11}|C) \]

Now the "same" conditional independence assumptions come into play: assume that each feature \(F_j \) is conditionally independent of every other feature \(F_j \) \(j \neq i \) given the category \(C \). This means that

\[p(C, F_1, \ldots, F_k) \]

\[\propto p(C)p(F_1|C)p(F_2|C)p(F_3|C)p(F_4|C)p(F_5|C)p(F_6|C)p(F_7|C)p(F_8|C)p(F_9|C)p(F_{10}|C)p(F_{11}|C) \]
Using Bayes' theorem, this can be written:

$$p(C|F_1, \ldots, F_n) = \frac{p(C|F_1, \ldots, F_n)}{p(F_1, \ldots, F_n)}$$

In plain English, the above equation can be written as:

posterior = prior \times likelihood

In practice, there is interest only in the numerator of that fraction, because the denominator does not depend on C and the values of the features F_i are given, so that the denominator is effectively constant. The numerator is equivalent to the joint probability model

$$p(C, F_1, \ldots, F_n)$$

which can be written as follows, using the chain rule for repeated applications of the definition of conditional probability:

$$p(C, F_1, \ldots, F_n) \
\propto p(C) \cdot p(F_1,F_2,C,F_3,F_4,F_5) \cdot p(F_6,F_7,F_8)$$

Now the "same" conditional independence assumptions come into play: assume that each feature F_i is conditionally independent of every other feature F_j for $j \neq i$, given the category C. This means that

$$p(F_i|C, F_j) = p(F_i|C)$$

and so the joint model can be expressed as

$$p(C) \cdot p(F_1|C) \cdot p(F_2|C) \cdot p(F_3|C) \cdot p(F_4|C) \cdot p(F_5|C) \cdot p(F_6|C) \cdot p(F_7|C) \cdot p(F_8|C)$$

Using Bayes' theorem, this can be written:

$$p(C|F_1, \ldots, F_n) = \frac{p(C|F_1, \ldots, F_n)}{p(F_1, \ldots, F_n)}$$

In plain English, the above equation can be written as:

posterior = prior \times likelihood

In practice, there is interest only in the numerator of that fraction, because the denominator does not depend on C and the values of the features F_i are given, so that the denominator is effectively constant. The numerator is equivalent to the joint probability model

$$p(C, F_1, \ldots, F_n)$$

which can be written as follows, using the chain rule for repeated applications of the definition of conditional probability:

$$p(C, F_1, \ldots, F_n) \
\propto p(C) \cdot p(F_1,F_2,C,F_3,F_4,F_5) \cdot p(F_6,F_7,F_8)$$

Now the "same" conditional independence assumptions come into play: assume that each feature F_i is conditionally independent of every other feature F_j for $j \neq i$, given the category C. This means that

$$p(F_i|C, F_j) = p(F_i|C)$$

and so the joint model can be expressed as

$$p(C|F_1, \ldots, F_n) = \frac{p(C|F_1, \ldots, F_n)}{p(F_1, \ldots, F_n)}$$

The assumptions on distributions of features are called the event model of the Naïve Bayes classifier. For discrete features like the ones encountered in document classification (e.g., spam or not spam), the assumptions lead to two distinct models, which are often combined. When dealing with continuous data, a typical assumption is that the continuous values associated with each class are distributed according to a Gaussian distribution. For example, suppose the training data contains a continuous attribute. We first segment the data by the class, and then compute the mean and variance of this attribute in each class. Let μ_k be the mean of the values in the kth class, and let σ_k^2 be the variance of the values in the kth class. Then, the probability of some value x given class C_k can be computed by plugging x into the equation for a normal distribution parameterized by μ_k and σ_k^2.
The assumptions on distributions of features are called the event model of the Naive Bayes classifier. For discrete features like the ones encountered in document classification (include spam filtering), multinomial and Bernoulli distributions are popular. These assumptions lead to two distinct models, which are often confused. When dealing with continuous data, a typical assumption is that the continuous values associated with each class are distributed according to a Gaussian distribution.

For example, suppose the training data contain a continuous attribute X. We first segment the data by the class, and then compute the mean and variance of X in each class. Let μ_c be the mean of the values in X associated with class c, and let σ_c^2 be the variance of the values in X associated with class c. Then, the probability of some value given a class $P(X = x | c)$ can be computed by plugging x into the equation for a normal distribution parameterized by μ_c and σ_c^2. That is,

$$P(X = x | c) = \frac{1}{\sqrt{2\pi \sigma_c^2}} \exp\left(-\frac{(x - \mu_c)^2}{2\sigma_c^2}\right)$$

Another common technique for handling continuous features is to use binning to discretize the feature values, to obtain a new set of Bernoulli-distributed features. In general, the distribution method is a better choice if there is a small amount of training data, or if the precise distribution of the data is known. The discretization method tends to do better if there is a large amount of training data because it will learn to fit the distribution of the data. Since naive Bayes is typically used when a large amount of data is available (as more computationally expensive models can generally achieve better accuracy), the discretization method is generally preferred over the distribution method.

Sample correction

If a given class and feature value never occur together in the training data, then the frequency-based probability estimate will be zero. This is problematic because it will wipe out all information in the other probabilities when they are multiplied. Therefore, it is often desirable to incorporate a small-sample correction, called pseudocounts, in all probability estimates such that no probability is ever set to be exactly zero.

Constructing a classifier from the probability model

The discussion so far has described the independent feature model, that is, the naive Bayes probability model. The naive Bayes classifier combines this model with a decision rule. One common rule is to pick the hypothesis that is most probable. This is known as the maximum a posteriori (MAP) decision rule. The corresponding classifier, a Bayes classifier, is the function f defined as follows:

Examples

Sex classification

Problem: classify whether a given person is a male or a female based on the measured features. The features include height, weight, and foot size.

Training

Example training set below. The classifier created from the training set using a Gaussian distribution assumption would be given variances are sample variances.

<table>
<thead>
<tr>
<th>sex</th>
<th>height (inches)</th>
<th>weight (lbs)</th>
<th>foot size (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>5</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>male</td>
<td>5.50 (5'7”)</td>
<td>150</td>
<td>11</td>
</tr>
<tr>
<td>male</td>
<td>5.50 (5’7”)</td>
<td>170</td>
<td>12</td>
</tr>
<tr>
<td>male</td>
<td>5.50 (5’7”)</td>
<td>165</td>
<td>10</td>
</tr>
<tr>
<td>female</td>
<td>5</td>
<td>150</td>
<td>8</td>
</tr>
<tr>
<td>female</td>
<td>5.50 (5’7”)</td>
<td>130</td>
<td>7</td>
</tr>
<tr>
<td>female</td>
<td>5.75 (5’10”)</td>
<td>150</td>
<td>9</td>
</tr>
</tbody>
</table>

The classifier created from the training set using a Gaussian distribution assumption would be given variances are sample variances.

<table>
<thead>
<tr>
<th>sex</th>
<th>mean (height)</th>
<th>variance (height)</th>
<th>mean (weight)</th>
<th>variance (weight)</th>
<th>mean (foot size)</th>
<th>variance (foot size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>5.50</td>
<td>0.150</td>
<td>165</td>
<td>10.25</td>
<td>12</td>
<td>4.00</td>
</tr>
<tr>
<td>female</td>
<td>5.75</td>
<td>0.150</td>
<td>130</td>
<td>7.50</td>
<td>9</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Let's say we have equiprobable classes as $P(male|male) = 0.5$. This prior probability distribution might be based on our knowledge of frequencies in the larger population, or on frequency in the training set.
Let's say we have probabilities for male and female heights and weights. The classifier from the training set would have been trained on these data:

<table>
<thead>
<tr>
<th>Class</th>
<th>Height (inches)</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>68</td>
<td>180</td>
</tr>
<tr>
<td>Female</td>
<td>64</td>
<td>140</td>
</tr>
</tbody>
</table>

The classifier created from the training set using a Gaussian distribution assumption would have been trained on these data. The classifier output would be:

1. Male
2. Female

Let's say we have heights and weights for two new samples:

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>Height (inches)</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 2</td>
<td>64</td>
<td>120</td>
</tr>
</tbody>
</table>

For the classification as male, the posterior is given by:

\[P_{\text{male}} = \frac{P(\text{male}) P(\text{height|male}) P(\text{weight|male}) P(\text{footsize|male})}{\text{evidence}} \]

For the classification as female, the posterior is given by:

\[P_{\text{female}} = \frac{P(\text{female}) P(\text{height|female}) P(\text{weight|female}) P(\text{footsize|female})}{\text{evidence}} \]

The evidence (also called normalizing constant) may be calculated since the sum of the posterior probabilities must equal one.

\[\text{evidence} = P(\text{male}) P(\text{height|male}) P(\text{weight|male}) P(\text{footsize|male}) = P(\text{female}) P(\text{height|female}) P(\text{weight|female}) P(\text{footsize|female}) \]

For the document classification problem, consider the problem of classifying documents by their content, for example into spam and non-spam categories. Imagine that documents are drawn from a number of classes of documents which can be modelled as sets of words where the independent probability that the i-th word of a given document occurs in a document from class C can be written as:

\[P(w_i|C) \]

For this treatment, we simplify things further by assuming that words are randomly distributed in the document - that is, words are not dependent on the length of the document, position within the document with respect to other words, or other document context.

Then the probability that a given document D contains all of the words \(\{w_i\} \), given a class C, is:

\[P(D|C) = \prod_i P(w_i|C) \]

The question we desire to answer is: What is the probability that a given document D belongs to a given class C? In other words, what is \(P(C|D) \)?

By Bayes' theorem, we can write:

\[P(C|D) = \frac{P(D|C) P(C)}{P(D)} \]

Bayes' theorem represents these into a statement of probability in terms of likelihood:

\[P(C|D) = \frac{P(D|C) P(C)}{P(D)} \]

Assume for the moment that there are only two mutually exclusive classes, S and T (e.g., spam and not spam), such that every document (email) is in either one or the other:

\[P(D) = \sum_C P(D|C) P(C) \]
Graph Clustering

- Given directed, weighted graph $G = (V, E, w)$: A graph clustering $C = \{C_1, C_2, ..., C_k\}$ is a partition of V into non-empty subsets C_i.

- Notations:
 - $E(C, i, j)$: Set of edges in G from C_i to C_j;
 - $E(C) = \bigcup_{i=1}^{k} E(C, i)$: Set of intra-cluster edges;
 - $E(C) = E \setminus E(C)$: Set of inter-cluster edges;
 - $m(C) = |E(C)|$; $\overline{m}(C) = |\overline{E}(C)|$;
 - $G(C, i)$: subgraph induced by C_i;
 - C with $k=1$: 1-clustering; C with $k=|V|$: singletons; (both: Trivial clustering);
 - C with $k=2$: cut;
 - $A(G)$: Set of all possible clusterings on G;

Graph Clustering

- Given directed, weighted graph $G = (V, E, w)$: A graph clustering $C = \{C_1, C_2, ..., C_k\}$ is a partition of V into non-empty subsets C_i.

- Notations:
 - $E(C, i, j)$: Set of edges in G from C_i to C_j;
 - $E(C) = \bigcup_{i=1}^{k} E(C, i)$: Set of intra-cluster edges;
 - $E(C) = E \setminus E(C)$: Set of inter-cluster edges;
 - $m(C) = |E(C)|$; $\overline{m}(C) = |\overline{E}(C)|$;
 - $G(C, i)$: subgraph induced by C_i;
 - C with $k=1$: 1-clustering; C with $k=|V|$: singletons; (both: Trivial clustering);
 - C with $k=2$: cut;
 - $A(G)$: Set of all possible clusterings on G;
Graph Clustering

- Given directed, weighted graph $G = (V, E, w)$, a graph clustering $C = \{C_1, C_2, \ldots, C_k\}$ is a partition of V into non-empty subsets C_i.

- Notations:
 - $E(C_{i,j})$: Set of edges in G from C_i to C_j;
 - $E(C) = \bigcup_{i=1}^{k} E(C_{i})$: Set of intra-cluster edges;
 - $E(G) = E \setminus E(C)$: Set of inter-cluster edges;
 - $m(C) = |E(C)|$; $\overline{m}(C) = |\overline{E(C)}|$;
 - $G(C_{i})$: subgraph induced by C_i;
 - C with $k=1$: 1-clustering; C with $k=|V|$: singletons; (both: Trivial clustering);
 - C with $k=2$: cut;
 - $A(G)$: Set of all possible clusterings on G;

- Notations (continued):
 - Let $C_{-1} = \{C_1, C_2, \ldots, C_k\}$ and $C_{-2} = \{C'_1, C'_2, \ldots, C'_l\}$:
 - $C_1 \leq C'_2 \iff \forall i \exists j : C_i \subseteq C'_j$;
 - C_{-1}: refinement of C_{-2}; C_{-2}: coarsening of C_{-1};
 - $S(V)$: (Proper) Cut function: Cutting the node-set in two (non-empty) subsets: $S(V)$ and $V \setminus S(V)$;

- Quality Measures for Clusterings

 - Quality measure: Objective function $A(G) \rightarrow \mathbb{R}$ that formalizes the clustering paradigm in a special way
 - $G = (V, E, w)$: Weight function $w: E \rightarrow \mathbb{R}^+$ is interpreted as "similarity" (higher weights correspond to more intense tie); also possible: negative weights = dissimilarity; or $w: E \rightarrow [0,1]$ or $w: E \rightarrow [-1,1]$ etc.
 - Distinguish between no edge and edge with weight zero;
 - Notation: $w(E) = \sum_{e \in E} w(e)$
Quality Measures for Clusterings

- **Quality measure**: Objective function $A(G) \rightarrow \mathbb{R}$ that formalizes the clustering paradigm in a special way.

- **G=(V,E,w)**: Weight function $w: E \rightarrow \mathbb{R}^+$ is interpreted as “similarity” (higher weights correspond to more intense tie); also possible: negative weights = dissimilarity; or $w: E \rightarrow [0,1]$ or $w: E \rightarrow [-1,1]$ etc.

- **Distinguish** between no edge and edge with weight zero.

- **Notation**: $w(E) = \sum_{e \in E} w(e)$

6: Graph Clustering

- **General framework** for a quality index of a clustering:

 $\text{index}(C) = \frac{\text{f}(C) + \text{g}(C)}{\max \{\text{f}(C') + \text{g}(C') : C' \in A(G)\}}$

- **f**: $A(G) \rightarrow \mathbb{R}^+$ measures intrACLuster density (coherence);

- **g**: $A(G) \rightarrow \mathbb{R}^+$ measures interCluster sparseness (decoherence);

Coverage

- **First quality measure**: Coverage

 \[\gamma(C) = \frac{w(E(C))}{w(E)} = \frac{\sum_{e \in E(C)} w(e)}{\sum_{e \in E} w(e)} \]

 Thus: $f = w(E(C))$ and $g = 0$; \rightarrow only accumulated intrACLuster density is measured.

 - Maximum value 1 achieved for $C=\{V\}$ (1-clustering).

 - A clustering has coverage $\gamma(C)=1$ iff $\overline{E(C)}=\emptyset$ (clustering is union of connected components of G) or $w(E(C))=0$.

 - C with $k=1$ can be transformed into C' with $k'<k$ and $\gamma(C) \leq \gamma(C')$ by merging two clusters in $C \rightarrow$ optimal non-trivial C is a minimum cut.

 - \rightarrow “Monotonic” behavior of coverage \rightarrow coverage is not a good sole quality index.
Conductance

- **Clustering paradigm reformulated:** Clusters should be well connected (many edges need to be removed to make it unconnected), few inter cluster edges (ideally none)

- **Conductance: Measure for bottlenecks** (Bottleneck: Cut that separates V into roughly same size halves and “cuts across” relatively few edges)

- Let $C = \{C_1, V \setminus C_1\}$ be a cut. Conductance φ of C is defined as

$$
\varphi(C) = \begin{cases}
1 & \text{ if } C_1 \subseteq \{\emptyset, V\} \\
0 & \text{ if } C_1 \not\subseteq \{\emptyset, V\}, w(E(C))=0 \\
\frac{w(E(C))}{\min \{\sum_{e \in E(C_1, V)} w(e), \sum_{e \in E(V \setminus C_1, V)} w(e)\}} & \text{ otherwise}
\end{cases}
$$

- **Theorem:** If G is undirected and positively weighted, G has maximum conductance $\varphi(G)=1$ if G is connected and has at most three nodes or is a star.

Conductance

- **Conductance φ of G is defined as**

$$
\varphi(G) = \min_{C_1 \subseteq V} \varphi(C_1, V \setminus C_1)
$$

- **Small conductance \leftrightarrow “good cut possible”**

- All unconnected graphs have conductance 0

- **Theorem:** If G is undirected and positively weighted, G has maximum conductance $\varphi(G)=1$ if G is connected and has at most three nodes or is a star. (Proof: see [1])

Proof: \leftarrow

$$
\sum_{e \in E(C_1, V)} w(e) = w(E(C_1)) + w(\overline{E(C)})
$$

$$
\frac{w(E(C))}{\min \{\sum_{e \in E(C_1, V)} w(e), \sum_{e \in E(V \setminus C_1, V)} w(e)\}} = 1
$$

0 if star or at most 3 nodes
Theorem: If G is undirected and positively weighted, G has maximum conductance $\varphi(G) = 1$ iff G is connected and has at most three nodes or is a star. (Proof: see [1])

\[
\sum_{e \in E(C_{-1}, \nu')} w(e) = w(E(C_{-1})) + w(E(C)) \rightarrow \\
\frac{w(E(C))}{\min(\sum_{e \in E(C_{-1}, \nu')} w(e), \sum_{e \in E(\nu \setminus C_{-1}, \nu')} w(e))} = \\
\frac{w(E(C))}{w(E(C)) + \min(w(E(C_{-1})), w(E(\nu \setminus C_{-1})))} = 1 \\
\text{if star or at most 3 nodes}
\]