Script generated by TTT

Title: Seidl: Virtual_Machines (14.06.2016)

Date: Tue Jun 14 10:23:22 CEST 2016

Duration: 90:52 min

Pages: 38

ldea (cont.)

e The fields of a sub-class are appended to the corresponding fields of the
super-class.

Example

class mylist : list {

int morelnfo;

... results in:

info

next

last

morelnfo

374

For every class C we assume that we are given an adress environment pc .

pc maps every identifier x visible inside C to its decorated relative address
a . We distingish:

global variable

= o
)
B

=
Ry

local variable

attribute

virtual function

non-virtual function

=
=2
2

static function

—_ == ===
S| >
)
Z|E

Wnn
=
R

For virtual functions x , we do not store the starting address of the code — but the
relative address b of the field of x inside the object.

375

For every class C we assume that we are given an adress environment pc .

pc maps every identifier x visible inside C to its decorated relative address
a . We distingish:

global variable

L]
=
2

=
R

local variable

attribute

P Nt

virtual function

=

non-virtual function

=
i~}
B

== ===
<>
=

static function

Wn
=
Ry

For virtual functions x , we do not store the starting address of the code — but the
relative address b of the field of x inside the object.

375

For the various of variables, we obtain for the L-v For the various of variables, we obtain for the L-values:

loadr -3 if x=this loadr —3 if x = this
loadca if px=(G,a) loadc a if px=(G,a)
code, x p = loadrca if px=(L,a) code, x p = loadrc a if px=(L,a)
loadr —3 loadr —3
loadca loadc a
add if px=(A,nq) add if px=(A,a)
In particular, the pointer to the current object has relative address -3. In particular, the pointer to the current object has relative address -3.
376 376
Accordingly, we introduce the abbreviated operations: Discussion
loadm q = |loadr —3
loade g e Besides storing the current object pointer inside the stack frame, we could have
4d additionally used a specific register COP.
a
e This register must updated before calls to non-static member functions and
load
restored after the call.
e We have refrained from doing so since
storemq = |loadr -3
loadc q — Only some functions are member functions.
add — We want to reuse as much of the C-machine as possible.
[store I

377 378

41 Calling Member Functions

Static member functions are considered as ordinary functions.
For non-static member functions, we distinguish two forms of calls:

(1) directly: f ez - -rey)
(2) relative to an object: e1.f (e2,...,)

Idea

e The case (1) is considered as an abbreviation of this.f (ea, ..., ex).
e The object is passed to f as an implicit first argument.
e If f is non-virtual, proceed as with an ordinary call of a function.

e If f isvirtual, insert an indirect call.

379

'
—> () = @Q)
A non-virtual function: e’\ f -~ A f- (. \

coder e1.f (e2,...,en) p = coder €, p

codeg e; p
coder ey p
mark
loade f
call
slide m

where (N, f) = pc(f)

C =classof e;

m = space for the actual parameters

Remark

The pointer to the object is obtained by computing the L-value of ;.

380

A non-virtual function:
coder e1.f (ez,....en) p = coder e, p

codeg ez p

coder e p

mark

loade f

call

slide m
where (N,) = pe(f)

C=classof ¢

m = space for the actual parameters

Remark

The pointer to the object is obtained by computing the L-value of ¢;.

380

A virtual function:
codeg e1.f (ez,...,eq) p = codegeyp

codeg ez p
yder
mar
;% loads 2
loadc b
add @
call
slide m
where (V,b) = pc(f)
C =classof e

m = space for the actual parameters

381

The instruction

The instruction

loads j loads relative to the stack pointer:

i } I loadsj I
42|

2

S[SP+1] = S[SP];
SP++;

382

loads j loads relative to the stack pointer:

i T I loadsj I
42|

42

S[SP+1] = S[SP—j];
SP++;

382

codegr e1.f (e, ...,eq) p = codegeyp

coder ez p
coder e; p
mark
loads 2
loadc b
add ; load
call
slide m

where (V,b) = pc(f)

C =class of ¢

m = space for the actual parameters

381

. in the Example:

The recursive call

in the body of the virtual method last s translated into:

loadm 1
mark
loads 2
loade 2
add
load

call

383

. in the Example:

The recursive call 42 Defining Member Functions
next — last ()

in the body of the virtual method last is translated into: In general, a definition of a member function for class C looks as follows:

d = ff(ngCz,---;fuxn){SS}

loadm 1
mark
loads 2 ldea
loadc 2
add e f s treated like an ordinary function with one extra implicit argument
load e Inside f apointer this to the current object has relative address -3.
call e Object-local data must be addressed relative to this ...
383 384
. in the Example:
codep d p = _f: enterq /] Setting the EP
alloc m /| Allocating the local variables | 6 oadm 0 loads 2
ast: enter oadm oads
code 55 pq -
o iy . . alloc 0 storer -3 loadc 2
return /] Leaving the function loadm 1 dd
oadm return a
loadc 0 load
where g = axS+m where eq A loadm 1 all
max§ = maximal depth of the local stack jumpz A mark storer -3
m = space for the local variables return
it = local address environment

385 386

43 Calling Constructors

Every new object should be initialized by (perhaps implicitly) calling a constructor.

We distinguish two forms of object creations:
(1) directly: Cux(ez ... en);
(2) indirectly: new C (ey,...,en)

|dea for (2)

e Allocate space for the object and return a pointer to it on the stack;
e Initialize the fields for virtual functions;

e Pass the object pointer as first parameter to a call to the constructor;
e Proceed as with an ordinary call of a (non-virtual) member function.

¢ Unboxed objects are considered later ...

387

coder new C (ez,...,e,) p = loadc|C|
new
initVirtual C

codeg ey p

codeg ez p

loads m /] loads relative to SP
mark

loade C

call

popm—+1

where m = space for the actual parameters.

Before calling the constructor, we initialize all fields of virtual functions.

The pointer to the object is copied into the frame by an extra instruction.

388

codeg new C (ez,...,e,) p

where

= loadc |C|
new
initVirtual C

codeg e, p

codeg e; p

loads m // loads relative to SP
mark

loade C

call

pop m+1

m = space for the actual parameters.

Before calling the constructor, we initialize all fields of virtual functions.

The pointer to the object is copied into the frame by an extra instruction.

388

Assume that the class C lists the virtual functions fi,...,f, for C with

the offsets and initial addresses:

Then:

b; and a; , respectively:

initVirtual C = loadc ay;

loads 1;
loadc by; add;

store E

loadc a,;
loads 1;
loadc b,; add;

store; pop;

389

44 Defining Constructors

In general, a definition of a constructor for class C looks as follows:

d = Cl(taxa,.c., tuxy) {85}

[dea

e Treat the constructor as a definition of an ordinary member function.

390

Example

int count =0;

class list {
int info;
class list * next;
list (int x) {

info = x; count++4; next = null;

I
virtual int last () {
if (next == null) return info;

else return next — last ();

3711

. in the Example:

_list:

. in the Example:

_list:

enter 3
alloc 0
loadr -4

storem 0

pop

enter 3

alloc 0

loadr -4

storem 0
—————

pop

loada 1
loade 1
add

storea 1

pop

391

loada 1
loadc 1
add

storea 1

pop

391

loadc 0
storem 1
pop

return

loadc 0
storem 1
pop

retumn

Discussion

The constructor may issue further constructors for attributes if desired.

The constructor may call a constructor of the super class B as first action:

code B(ez,...,en); p = codegreyp

codeg €2 p

loadr —3
mark
loadc B
call

pop m+1

where m = space for the actual parameters.

The constructor is applied to the current object of the calling constructor!

392

codeg C x (e2,...,eq) p = code. xp
initVirtual C

codeg e, p

codeg e p

loads m
mark
loade C

call /1410
op m+
popm+d Y

where m = space for the actual parameters.

394

45 Initializing Unboxed Objects

Problem

The constructor is called already at the declaration of x:

Cox ez, en);

Idea

e Push a reference to the memory block already allocated for x.
e Initialize that block.

e Pop the stack frame of the constructor together with the reference to x.

393

codeg C x (ea,...,eq) p = code. xp
initVirtual C

codegr e, p

coder ez p
loads m
mark
loade C
call

pop m+2

where m = space for the actual parameters.

394

A 1 @B e 1B]

46 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:
e generating new threads: create();
e terminating a thread: exit();
e waiting for termination of a thread: join();

e mutual exclusion: lock(), unlock(); ...

In order to enable a parallel program execution, we extend the virtual machine (what
else?)

396

Q&_”/’Tﬁh’?e/ads

395

47 Storage Organization

All threads share the same common code store and heap:

397

... similar to the CMa, we have:

C = Code Store — contains the CMa program;
every cell contains one instruction;
PC = Program-Counter — points to the next executable instruction;
H = Heap —
every cell may contain a base value or an address;
the globals are stored at the bottom;
NP = New-Pointer — points to the first free cell.

For a simplification, we assume that the heap is stored in a separate segment. The
function malloc() then fails whenever NP exceeds the topmost border.

398

In constrast to the CMa, we have:

SSet = Set of Stacks — contains the stacks of the threads;
every cell may contain a base value of an address;
S = common address space for heap and the stacks;
SP = Stack-Pointer — points to the current topmost ocupied stack cell;
FP = Frame-Pointer — points to the current stack frame.
Caveat

e If all references pointed into the heap, we could use separate address spaces for

each stack.

Besides SP and FP, we would have to record the number of the current stack.

e In the case of C, though, we must assume that all storage regions live within the

same address space — only at different locations.

SP Und FP then uniquely identify storage locations.

e For simplicity, we omit the extreme-pointer EP.

400

Every thread on the other hand needs its own stack:

399

