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ldea (cont.)

e The fields of a sub-class are appended to the corresponding fields of the
super-class.

Example

class mylist : list {

int morelnfo;

... results in:

info

next

last

morelnfo
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For every class C we assume that we are given an adress environment pc .

pc  maps every identifier x visible inside C to its decorated relative address
a . We distingish:
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For virtual functions x , we do not store the starting address of the code — but the
relative address b of the field of x inside the object.
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For every class C we assume that we are given an adress environment pc .

pc maps every identifier  x visible inside C  to its decorated relative address
a . We distingish:
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For virtual functions x , we do not store the starting address of the code — but the
relative address b of the field of x inside the object.
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For the various of variables, we obtain for the L-v For the various of variables, we obtain for the L-values:

loadr -3 if x=this loadr —3 if x = this
loadca if px=(G,a) loadc a if px=(G,a)
code, x p = loadrca if px=(L,a) code, x p = loadrc a if px=(L,a)
loadr —3 loadr —3
loadca loadc a
add if px=(A,nq) add if px=(A,a)
In particular, the pointer to the current object has relative address -3. In particular, the pointer to the current object has relative address -3.
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Accordingly, we introduce the abbreviated operations: Discussion
loadm q = |loadr —3
loade g e Besides storing the current object pointer inside the stack frame, we could have
4d additionally used a specific register COP.
a
e  This register must updated before calls to non-static member functions and
load
restored after the call.
e We have refrained from doing so since
storemq = |loadr -3
loadc q —  Only some functions are member functions.
add —  We want to reuse as much of the C-machine as possible.
[store I
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41 Calling Member Functions

Static member functions are considered as ordinary functions.
For non-static member functions, we distinguish two forms of calls:

(1) directly: f ez - -rey)
(2) relative to an object: e1.f (e2,..., )

Idea

e The case (1) is considered as an abbreviation of this.f (ea, ..., ex).
e The object is passed to  f as an implicit first argument.
e If f is non-virtual, proceed as with an ordinary call of a function.

e If f isvirtual, insert an indirect call.
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A non-virtual function: e’\ f -~ A f- ( . \

coder e1.f (e2,...,en) p = coder €, p

codeg e; p
coder ey p
mark
loade f
call
slide m

where (N, f) = pc(f)

C =classof e;

m = space for the actual parameters

Remark

The pointer to the object is obtained by computing the L-value of ;.

380

A non-virtual function:
coder e1.f (ez,....en) p = coder e, p

codeg ez p

coder e p

mark

loade f

call

slide m
where (N, ) = pe(f)

C=classof ¢

m = space for the actual parameters

Remark

The pointer to the object is obtained by computing the L-value of ¢;.
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A virtual function:
codeg e1.f (ez,...,eq) p = codegeyp

codeg ez p
yder
mar
;% loads 2
loadc b
add @
call
slide m
where  (V,b) = pc(f)
C =classof e

m = space for the actual parameters
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The instruction

The instruction

loads j loads relative to the stack pointer:

i } I loadsj I
42|

2

S[SP+1] = S[SP];
SP++;

382

loads j loads relative to the stack pointer:

i T I loadsj I
42|

42

S[SP+1] = S[SP—j];
SP++;

382

codegr e1.f (e, ...,eq) p = codegeyp

coder ez p
coder e; p
mark
loads 2
loadc b
add ; load
call
slide m

where  (V,b) = pc(f)

C =class of ¢

m = space for the actual parameters
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. in the Example:

The recursive call

in the body of the virtual method last s translated into:

loadm 1
mark
loads 2
loade 2
add
load

call
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. in the Example:

The recursive call 42  Defining Member Functions
next — last ()

in the body of the virtual method last is translated into: In general, a definition of a member function for class C looks as follows:

d = ff(ngCz,---;fuxn){SS}

loadm 1
mark
loads 2 ldea
loadc 2
add e f s treated like an ordinary function with one extra implicit argument
load e Inside f apointer this to the current object has relative address -3.
call e  Object-local data must be addressed relative to  this ...
383 384
. in the Example:
codep d p = _f: enterq /] Setting the EP
alloc m /| Allocating the local variables | 6 oadm 0 loads 2
ast:  enter oadm oads
code 55 pq -
o iy . . alloc 0 storer -3 loadc 2
return /] Leaving the function loadm 1 dd
oadm return a
loadc 0 load
where g = axS+m where eq A loadm 1 all
max§ = maximal depth of the local stack jumpz A mark storer -3
m = space for the local variables return
it = local address environment
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43 Calling Constructors

Every new object should be initialized by (perhaps implicitly) calling a constructor.

We distinguish two forms of object creations:
(1)  directly: Cux(ez ... en);
(2) indirectly: new C (ey,...,en)

|dea for  (2)

e  Allocate space for the object and return a pointer to it on the stack;
e Initialize the fields for virtual functions;

e  Pass the object pointer as first parameter to a call to the constructor;
e Proceed as with an ordinary call of a (non-virtual) member function.

¢ Unboxed objects are considered later ...
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coder new C (ez,...,e,) p = loadc|C|
new
initVirtual C

codeg ey p

codeg ez p

loads m /] loads relative to SP
mark

loade C

call

popm—+1

where  m = space for the actual parameters.

Before calling the constructor, we initialize all fields of virtual functions.

The pointer to the object is copied into the frame by an extra instruction.
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codeg new C (ez,...,e,) p

where

= loadc |C|
new
initVirtual C

codeg e, p

codeg e; p

loads m // loads relative to SP
mark

loade C

call

pop m+1

m = space for the actual parameters.

Before calling the constructor, we initialize all fields of virtual functions.

The pointer to the object is copied into the frame by an extra instruction.
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Assume that the class  C  lists the virtual functions  fi,...,f, for C with

the offsets and initial addresses:

Then:

b; and a; , respectively:

initVirtual C = loadc ay;

loads 1;
loadc by; add;

store E

loadc a,;
loads 1;
loadc b,; add;

store; pop;
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44  Defining Constructors

In general, a definition of a constructor for class C looks as follows:

d = Cl(taxa,.c., tuxy) {85}

[dea

e  Treat the constructor as a definition of an ordinary member function.
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Example

int count =0;

class list {
int info;
class list * next;
list (int x) {

info = x; count++4; next = null;

I
virtual int last () {
if (next == null) return info;

else return next — last ();

3711

. in the Example:

_list:

. in the Example:

_list:

enter 3
alloc 0
loadr -4

storem 0

pop

enter 3

alloc 0

loadr -4

storem 0
—————

pop

loada 1
loade 1
add

storea 1

pop
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loada 1
loadc 1
add

storea 1

pop

391

loadc 0
storem 1
pop

return

loadc 0
storem 1
pop

retumn



Discussion

The constructor may issue further constructors for attributes if desired.

The constructor may call a constructor of the super class B as first action:

code B(ez,...,en); p = codegreyp

codeg €2 p

loadr —3
mark
loadc B
call

pop m+1

where m = space for the actual parameters.

The constructor is applied to the current object of the calling constructor!
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codeg C x (e2,...,eq) p = code. xp
initVirtual C

codeg e, p

codeg e p

loads m
mark
loade C

call /1410
op m+
popm+d Y

where m = space for the actual parameters.
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45  Initializing Unboxed Objects

Problem

The constructor is called already at the declaration of x:

Cox ez, en);

Idea

e  Push a reference to the memory block already allocated for x.
e Initialize that block.

e Pop the stack frame of the constructor together with the reference to x.
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codeg C x (ea,...,eq) p = code. xp
initVirtual C

codegr e, p

coder ez p
loads m
mark
loade C
call

pop m+2

where m = space for the actual parameters.
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46 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:
e generating new threads: create();
e terminating a thread: exit();
e waiting for termination of a thread:  join();

e mutual exclusion:  lock(), unlock(); ...

In order to enable a parallel program execution, we extend the virtual machine (what
else?)
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47  Storage Organization

All threads share the same common code store and heap:
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... similar to the CMa, we have:

C = Code Store — contains the CMa program;
every cell contains one instruction;
PC = Program-Counter — points to the next executable instruction;
H = Heap —
every cell may contain a base value or an address;
the globals are stored at the bottom;
NP = New-Pointer — points to the first free cell.

For a simplification, we assume that the heap is stored in a separate segment. The
function  malloc() then fails whenever NP exceeds the topmost border.
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In constrast to the CMa, we have:

SSet = Set of Stacks — contains the stacks of the threads;
every cell may contain a base value of an address;
S = common address space for heap and the stacks;
SP = Stack-Pointer — points to the current topmost ocupied stack cell;
FP = Frame-Pointer — points to the current stack frame.
Caveat

e If all references pointed into the heap, we could use separate address spaces for

each stack.

Besides SP and FP, we would have to record the number of the current stack.

e In the case of C, though, we must assume that all storage regions live within the

same address space — only at different locations.

SP Und FP then uniquely identify storage locations.

e For simplicity, we omit the extreme-pointer EP.
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Every thread on the other hand needs its own stack:
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