Script generated by TTT

Title: Seidl: Virtual_Machines (06.06.2016)
Date: Mon Jun 06 10:25:36 CEST 2016
Duration: 88:42 min

Pages: 38

e The run-time function trail() records the a potential new binding.
e The run-time function baektrack() initiates backtracking.

e The auxiliary function check() performs the occur-check: it tests

whether a variable (the first argument) occurs inside a term (the second

argument).

e Often, this check is skipped, i.e.,

bool check (ref u, ref v) { return true;}

x = £()

270

S|f2

S|f2

269

Discussion

e The translation of an equation X =t is very simple!

e Often the constructed cells immediately become garbage.

|dea 2

e Push a reference to the run-time binding of the left-hand side onto the stack.
e Avoid to construct sub-terms of { whenever possible !

e Translate each node of f into an instruction which performs the unifcation with
this node !!

272

Let us first consider the unifcation code for atoms and variables only:

codeyy a p
codey X p
codeyg

code;; X p

Let us first consider the unifcation code for atoms and variables only:

codey a p
codey X p
codey

codeyr X p

__P

_p

uatom a
uvar (pX)
pop
uref (p X)
// to be continued

274

uatom a
uvar (pX)
pop
uref (p X)
// to be continued

274

The instruction uatom a implements the unification with the atom a:

uatom a

p
R’ R }—>{ala]

v = §[SP]; SP—;

switch (H[v]) {

case (A, a): break;

case (R,): H[v] = (R, new (A, a));
trail (v); break;

default: backtrack();

1

e The run-time function trail() records the a potential new binding.

e The run-time function backtrack() initiates backtracking.

275

Discussion

e The translation of an equation X =t is very simple!

e Often the constructed cells immediately become garbage.

|dea 2

e Push a reference to the run-time binding of the left-hand side onto the stack.
e Avoid to construct sub-terms of { whenever possible !

e Translate each node of f into an instruction which performs the unifcation with
this node !!
codec (X=t)p = putXp

codey t p

273

Let us first consider the unifcation code for atoms and variables only: The instruction uatom a implements the unification with the atom a:

uatom a

p
R R +>[ala

codeyy a p = uatom a D

codey Xp = wvar (pX)
codey p = pop v = S[SP]; SP—;
codey Xp = uref (pX) switch (H[v]) {
) case (A, a): break;
// to be continued case (R,): H[v] = (R, new (A, a));
trail (v); break;
default: backtrack();
1
e The run-time function trail() records the a potential new binding.
e The run-time function backtrack() initiates backtracking.
274 275
The instruction uvar i implements the unification with an un-initialized variable: The instruction pop implements the unification with an anonymous variable. It
always succeeds.
-

uvari O - O

FP+ FP+i

S[FP+i] = S[SP]; SP-—;
SP-—;

276 277

The instruction uref i implements the unification with an initialized variable:

FP+i @ FP+i 4"'

6 =mgu (x,y)

unify (S[SP], deref (S[FP+i]));
SP-—;

It is only here that the run-time function wunify() is called.

278

e The unification code performs a pre-order traversal over t.

ustruct f/n A
son 1

COdCU t P

son n
codeys ty p

up B

check ivars(f(t1,.... 1)) p
codes f(tr,....tn) P

bind

279

e In case, execution hits at an unbound variable, we switch from checking to

// test

// occur-check
// building !!
// creation of bindings

. he@\ificaiion.% perfo%?a pr§-ordertravirsal 6«35(2 % ’\

In case, exelutionghits)at an pnbgund variable, ‘we switch f *ckmg
buildife. }L

codeys f(tr, ..., ta) p = ustruct f/n A // test
b a_ son 1

ca = (ﬁ__$7
S

son n
S codey ty p
up B
A check ivars(f(t1,...,ta)) p /] occur-check
codes f(t,....te) P // building !!
bind // creation of bindings
B:
279

The instruction check i checks whether the (unbound) variable on top of the
stack occurs inside the term bound to variable i.

If so, unification fails and backtracking is caused:

o ﬁ) o)
[>[R[} [—{r[|
check i
= —
]) —{ |
i — N4 i — A /‘
FP—{ | FP —>=| |

if (!check (S[SP], deref S[FP+i]))
backtrack();

281

(><><><) c—X =g

Before constructl g the new (sub-) germ #' for the binding, w%st exclude that
contains the variable X" on top of the stack !!!

This is the case iff the binding of no variable inside t' &qtajms (a reference t4) X'.
=

— iwars(t') retuzps the set of already initialized variaggs of t.

The mae&chu {Y1,...,Ys} p generates the necessary tests on the

ari a‘tw)l Qﬁl } »

check {Y1,...,Y. { 66@-(& Y (x

heck (p Ya)

check (p Yy)

280

The instruction bind terminates the building block. It binds the (unbound)
variable to the constructed term:

bind

! HIS[SP-l?! = (R, S[SP]);
[SP-1]);
SP =5P=2;

282

The Pre-Order Traversal

e First, we test whether the topmost reference is an unbound variable.

If so, we jump to the building block.
e Then we compare the root node with the constructor f/n.

e Then we recursively descend to the children.

e Then we pop the stack and proceed behind the unification code:

283

Once again the unification code for constructed terms:

codey f(tr, .-, ta) p = ustruct f/n A
son 1
codey t1 p
son n
codeyr ty p
up B

A check wwars(f(t1,...,ta)) p

codey f(h,....th) p
bind

284

// test

// recursive descent

// recursive descent

// ascent to father

The instruction check i checks whether the (unbound) variable on top of the
stack occurs inside the term bound to variable i.

If so, unification fails and backtracking is caused:

N
[= *-) [R[]
check i
- Y - p
i] ‘A\‘- 4 i I N
FP—3 | FP —= |

if (!check (S[SP], deref S[FP+i]))
backtrack();

281

’—f("\\ f(‘&,‘a>

The instruction ustruct f/n A implements the test of the root node of a structure:

ustruct f/n A

=T] ~[5[)

. ustruct f/nA _

— } —

=R+ | —R[
PC [] PC

switch (H[S[SP]]) {

case (S, f/n): break;

case (R,_): PC = A; break;
default: backtrack();

}

... the argument reference is not yet popped.

285

The instruction son i pushes the (reference to the) i-th sub-term from the
structure pointed at from the topmost reference:

son i

S[SP+1] = deref (H[S[SP]+i]); SP++;

286

I aC AL O CEEND RN

For our example term f(g(X,Y),a,Z) and p={X+— 1Y+ 2,73}
we obtain:

ustruct f/3 A; up By B;: son 2 putvar 2

son 1 uatom a putstruct g/2
ustruct g/2 Ay Az check 1 son 3 putatom a
son 1 putref 1 uvar 3 putvar 3

uref 1 putvar 2 up By putstruct f/3
son 2 putstruct g/2 A;: check 1 bind

uvar 2 bind putref 1 Bj:

Code size can grow quite considerably — for deep terms. In practice, though, deep
terms are “rare’.

288

It is the instruction up B which finally pops the reference to the structure:

up B

PC [] DPC

SP-—; PC =B;

The continuation address B is the next address after the build-section.

287

Example

For our example term f(g(X,Y),a,Z) and p={X—1,Y+2,7Z+3}
we obtain:

ustruct f/3 Ay up Bz Bs: son 2 putvar 2

son 1 uatom a putstruct g/2
ustruct g/2 A, Aj: check 1 son 3 putatom a
son 1 putref 1 uvar 3 putvar 3

uref 1 putvar 2 up By putstruct f/3
son 2 putstruct g/2 A;: check 1 bind

uvar 2 bind putref 1 Bj:

Code size can grow quite considerably — for deep terms. In practice, though, deep
terms are “rare”.

288

Then we translate:

32 Clauses

codec ¥ = pushenv m // allocates space for locals

Clausal code must code; g1 P

e allocate stack space for locals;

codeg
e evaluate the body; c&np
] popenv

e free the stack frame (whene»lir possible)

Let r denote the dause: p(Xi, o Xi) ¢ 1,0 8ne
o e The instruction popenv restores FP and PC and tries to pop the current stack
Let w ote the set of locals of r and p the address environment: frame.
P X,' =i . . -
It should succeed whenever program execution will never return to this stack frame.
Remark: The first k locals are always the formals.
289 290
The instruction pushenv m sets the stack pointer: Example

Consider the clause r:

pushenv m a(X,Y) « f(X,X1),a(X4,Y)
m Then codec v yields:
P E tw pushenv 3 mark@‘-—) A: mar 3 B: popenv

piyref 1 putref 3
putva putref 2
SP=FP +m;
call /2 call a/2
202

291

33 Predicates

A predicate q/k is defined through a sequence of clauses 1 =r;. STE
The translation of g/k provides the translations of the individual clauses r;.

In particular, we have for f =1

codeprr = g/k: codecr
If g/k is defined through several clauses, the first alternative must be tried.

On failure, the next alternative must be tried

B backtracking

293

0 F | D TP

TP o Trail Pointer

points to the topmost occupied Trail cell

295

33.1 Backtracking

e Whenever unifcation fails, we call the run-time function backtrack().

o The goal is to roll back the whole computation to the (dynamically) latest goal
where another clause can be chosen == the last backtrack point.

e In order to undo intermediate variable bindings, we always have recorded new

bindings with the run-time function trail().

e The run-time function +trail() stores variables in the data-structure trail:

294

The current stack frame where backtracking should return to is pointed at by the
extra register BP:

FP

296

A backtrack point is stack frame to which program execution possibly returns.

address);
e We save the old values of the registers HP, TP and BP.

e Note: The new BP will receive the value of the current FP.

For this purpose, we use the corresponding four organizational cells:

FP ———s={ posCont. | 0

FPold |-1
HPold |-2
TPold |-3
BPold | -4

negCont. | -5

297

Calling the run-time function void backtrack() vyields:

FP —== |
backtrack();
HP |42
TP |17 TP
BP L BP
PC |13 PC

We need the code address for trying the next alternative (negative continuation

~1| 2

L

void backtrack() {
FP = BP; HP = HPold;
reset (TPold, TP);
TP =TPold; PC = negCont;

where the run-time function reset() undoes the bindings of variables

established since the backtrack point.

299

For more comprehensible notation, we thus introduce the macros:

posCont
FPold
HPold
TPold
BPold

negCont

for the corresponding addresses.

Remark

Occurrence on the left

Occurrence on the right

S[FP]

S[FP — 1]
S[FP — 2]
S[FP — 3]
S[FP — 4]
S[FP — 5]

—— saving the register

—— restoring the register

208

