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A More Realistic Example

app(X,Y,Z) « X=[],Y=Z
W(X,Y,Z)  X=[HX], Z = [HZ], p(X, Y, )
? app(X,|Y.c|, [a,b,Z])

Remark

(] =
[H|Z] == binary constructor application
la, b, Z] = shorteut for: [a|[B][Z][]]]

the atom empty list
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A program p is constructed as follows:

toa= alX| [ flt.. )
g = plt,... k)| X=t

¢ = pXr ., Xi) 818
p o= Cle....Cnl$

e A term t either is an atom, a variable, an anonymous variable or a constructor
application.

e A goal g either is a literal, i.e., a predicate call, or a unification.

e A clause ¢ consists of a head p(Xi, ..., Xi) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as query.
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A ijjf 3
A program p is constructed as foIIows/

A

alX| | f(t,--
g = p(fl,..‘,fk)l}(:f
c = p(Xy.. X)) 818

{
p ou= cl.....c,,,?g}",,., ’,j& ﬂ é—a‘?{ﬂ

e A term f either is an atom, a variable, an anonymous variable or a constructor jz:

-
I

application.
e A goal g either is a literal, i.e., a predicate call, or a unification.

e A clause ¢ consists of a head p(Xj, ..., X;) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as query.
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Procedural View of Proll programs

literal == procedure call
predicate —— procedure
"} dause == definition
term = value
unification —=— basic computation step

binding of variables side effect

Note: Predicate calls ...
e ... do not have a return value.
e .. affect the caller through side effects only.

e ... may fail. Then the next definition is tried.

E backtracking

234
The Runtime Stack

s LT 1]

0 T SP

FP

S = Runtime Stack — every cell may contain a value or an address;
SP = Stack Pointer — points to the topmost occupied cell;
FP = Frame Pointer — points to the current stack frame.

Frames are created for predicate calls,

contain cells for each variable of the current clause
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28  Architecture of the WiM

The Code Store

c O H
0 1 r PC
C = Code store — contains WiM program;
every cell contains one instruction;
PC = Program Counter — points to the next instruction to executed;
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The Heap CV/ oo

0 1 T DHP

Heap for dynamicly constructed terms;

I
vl
]

Heap-Pointer — points to the first free cell;

e The heap in maintained like a stack as well.

e A new-instruction allocates a object in H.

e Objects are tagged with their types (as in the MaMa) ...
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atom 1 cell

variable 1 cell
unbound variable 1 cell
e structure (n+1) cells
T ( 4
- \/‘
-
i}
9@ £ T
, - -~
77 P b
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A

L L’U U@Q N
SR
ﬁ@ reference to X
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29 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing.

Assume that the address environment p returns, for each clause variable X its
address (relative to FP) on the stack. Then codey tp should ...

e construct (a presentation of) t in the heap; and
e return a reference to it on top of the stack.
Idea

e Construct the tree during a post-order traversal of ¢

e with one instruction for each new node!

Example t=f(g(X,Y),a,2Z).

Assume that X is initialized, i.e., S[FP+ pX] contains already a reference,
Y and Z are not yet initialized.
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For a distinction, we mark occurrences of already initialized variables through

overlining (e.g. X).
Note: Arguments are always initialized!

Then we define:

codegap = putatom a code f(t1,...,th)p = codestip

codes Xp = putvar (pX)

codea Xp = putref(pX) codes ty p

codes p = putanon putstruct f/n
241



For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized!

Then we define:

codesap = putatom a codeg f(t1,...,bn)p = codest1p
codega Xp = putvar(pX)

codea Xp = putref(pX) codes ty p
codeq p = putanon putstruct f/n

Fo@g(_, Y),a,Z) and p= {X+{1,¥ > 2,Z v 3} this results in the sequence:

putref 1 putatom a

putvar 2 putvar 3

putstruct g/2 putstruct f/3
242

The instruction  putvar i introduces a new unbound variable and additionally

initializes the corresponding cell in the stack frame:
E.‘ '
putv@
N e )
i T
FP —— P —

SP =SP + 1;
S[SP] = new (R, HP);
S[FP + i] = S[SP];
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The instruction  putatom a constructs an atom in the heap:

putatom a

SP++; S[SP] = new (A,a);
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The instruction  putanon introduces a new unbound variable but does not store a

reference to it in the stack frame:

putanon

|

SP=SP+1;
S[SP] = new (R, HP);

ﬁ/%) :Q[(X}\7>
—0 X =
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The instruction

The instruction

putref i pushes the value of the variable onto the stack:

putrefi
—0 -
FP ——
SP=5P+1;

S[SP] = deref S[FP +i];
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putstruct f/n  builds a constructor application in the heap:

€ z

n - -
" _ _
Lo putstruct f/n

.&. I |——=[S]f/n

v=new (5, f, n);
SP=SP-n+1;
for (i=1; i<=n; i++)

HIv +i] = S[SP +i-1];
S[SP] = v;
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The instruction  putref i pushes the value of the variable onto the stack:

utrefi RN
I{Eﬁo — 5O

P —=

SP=SP+1;
S[SP] = deref S[FP + i];

The auxiliary function  deref contracts chains of references:

ref deref (ref v) {
if (H[v]==(R,w) && v'!=w) return deref (w);
else return v;
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Remarks

e The instruction putref i does not just push the reference from S[FP + i] onto the
stack, but also dereferences it as much as possible

—— maximal contraction of reference chains.

¢ In constructed terms, references always point to smaller heap addresses.

Also otherwise, this will be often the case. Sadly enough, it cannot be
guaranteed in general.
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30 The Translation of Literals

Idea

e Literals are treated as procedure calls.

e We first allocate a stack frame.

e Then we construct the actual

parameters (in the heap)

e ... and store references to these into the stack frame.

e Finally, we jump to the code for the procedure/predicate.

codec pty,..., ) p =

LV

Example pla, X, g(X,Y)
We obtain:

mark B

putatom a

putvar 1
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mark B // allocates the stack frame
codeg h p
codey l p
call p/k // calls the procedure p/k

) with p={Xr+1Y 2}

putref 1 call p/3
putvar 2 B:
putstruct g/2
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codeg p(ty, .., k) p =

Stack Frame of the WiM

codes t1 p

codey ty p
call p/k
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sp

FP —

[)().‘-E)Ill.

FPold

-
o

P—

SEEES

“‘-\&“S\

i ——
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// allocates the stack frame

// calls the procedure p/k

I local stack

local variables

6 org. cells



Remarks The instruction mark B allocates a new stack frame:

e The positive continuation address records where to continue after successful mark B

treatment of the goal.

e Additional organizational cells are needed for the implementation of backtracking

= will be discussed at the translation of predicates. FP — FP —>

SP=5P +6;
S[SP] = B; S[SP-1] = FP;
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The instruction  call p/n  calls the n-ary predicate p :

call p/n 31  Unification
n
Convention
FP ——=
PCEI | PC[pa] e By X, we denote an occurrence of X;

— it will be translated differently depending on whether the variable is initialized or

not.
FP =SP-n; . -
PC=p/n; ¢ We introduce the macro put X p
put Xp = putvar (pX)
put __ p = putanon
put Xp = putref (pX)
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Let us translate the unification X =1 . Let us translate the unification X =1t .

Idea 1 Idea 1
e Push a reference to (the binding of) X onto the stack; e Push a reference to (the binding of) X onto the stack;
e Construct the term f in the heap; e Construct the term t in the heap;
e Invent a new instruction implementing the unification. ¢ Invent a new instruction implementing the unification!
codec (X=1t)p = putXp
codey t p
unify
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Example The instruction  unify calls the run-time function unify() for the topmost

two references:

Consider the equation:

o= f{g(}_(,}’),a,z)
Then we obtain for an address environment unify
p={X—=1,Y—2Z—3 U4}

putref 4 putref 1 putatom a unify ify (S[SP-1], S[SP]);
putvar 2 putvar 3 SP = SP-2;

putstruct g/2 putstruct f/3
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The Function unify() ; a é >

... takes two heap addresses. Eg E 7%\ - qé

For each call, we guarantee that these are maximally de-referenced.

... checks whether the two addresses are already identical.
If so, does nothing.

... binds younger variables (larger addresses) to older variables (smaller
addresses);

... when binding a variable to a term, checks whether the variable occurs inside
the term =—= occur-check;

.. records newly created bindings;

... may fail. Then backtracking is initiated.
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bool unify (ref u, ref v) {
if (u == v) return true;
if (H[u] == (R,_)) {
if (H[v] == (R,_)) {
if (wv) {
H[u] = (R,v); trail (u); return true;
} else {
H[v] = (R,u); trail (v); return true;
}
} elseif (check (u,v)) {
H[ul = (R,v); trail (u); return true;
} else {

backtrack(); return false;
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bool unify (ref u, ref v) {

if (u == v) return true;
if (Hlul = (R,.)) {
if (H[v] == (R,.)) {

if (u>v) {

Hlu]l = (R,v); trail (u); return true;
} else {

Hlv] = (R,u); trail (v); return true;
¥

} elseif (check (u,v)) {

H[u] = (R,v); trail (u); return true;
} else {

backtrack(); return false;
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bool unify (ref u, ref v) {

if (u == v) return true;
if (Hlul == (R,.)) {
if (HLv] == (R,.)) {

if (u>v) {
H[ul = (R,v); trail (u); return true;
} else {

Hlv] = (R,u); trail (v); return true;
}
} elseif (check (u,v)) {
H[u] = (R,v); trail (u); return true;
} else {

backtrack(); return false;
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if ((H[v] == R,.)) {

}

if (check (v,u)) {
Hlv] = (R,u); trail (v); return true;
} else {
backtrack(); return false;
}
}
if (H[ul==(Afa)) && H[v]==(A@)

return true;
if (H[ul==(S, zf/n> & II[V’]==(S,@) {

for (int i i<z@ i++)
if(lunify (deref (H[u+il), deref (H[v+i])) return false;
return true;
}

backtrack(); return false;
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S| fi2

S| fi2
266
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R ]
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S|f2
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The run-time function trail() records the a potential new binding.

The run-time function backtrack() initiates backtracking.

The auxiliary function  che¢k() performs the occur-check: it tests

whether a variable (the first grgument) occurs inside a term (the second

argument).

Often, this check is skipped, i.e.,

bool check (ref u, ref v) { return true;}
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S|f2

S|f2
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