Script generated by TTT

Title: Seidl: Virtual_Machines (30.05.2016)
Date: Mon May 30 10:26:37 CEST 2016
Duration: 76:22 min

Pages: 41

A More Realistic Example

app(X,Y,Z) « X=[],Y=Z
W(X,Y,Z) X=[HX], Z = [HZ], p(X, Y,)
? app(X,|Y.c|, [a,b,Z])

Remark

(] =
[H|Z] == binary constructor application
la, b, Z] = shorteut for: [a|[B][Z][]]]

the atom empty list

232

A program p is constructed as follows:

toa= alX| [flt..)
g = plt,... k)| X=t

¢ = pXr ., Xi) 818
p o= Cle....Cnl$

e A term t either is an atom, a variable, an anonymous variable or a constructor
application.

e A goal g either is a literal, i.e., a predicate call, or a unification.

e A clause ¢ consists of a head p(Xi, ..., Xi) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as query.

233

A ijjf 3
A program p is constructed as foIIows/

A

alX| | f(t,--
g = p(fl,..‘,fk)l}(:f
c = p(Xy.. X)) 818

{
p ou= cl.....c,,,?g}",,., ’,j& ﬂ é—a‘?{ﬂ

e A term f either is an atom, a variable, an anonymous variable or a constructor jz:

-
I

application.
e A goal g either is a literal, i.e., a predicate call, or a unification.

e A clause ¢ consists of a head p(Xj, ..., X;) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as query.

233

Procedural View of Proll programs

literal == procedure call
predicate —— procedure
"} dause == definition
term = value
unification —=— basic computation step

binding of variables side effect

Note: Predicate calls ...
e ... do not have a return value.
e .. affect the caller through side effects only.

e ... may fail. Then the next definition is tried.

E backtracking

234
The Runtime Stack

s LT 1]

0 T SP

FP

S = Runtime Stack — every cell may contain a value or an address;
SP = Stack Pointer — points to the topmost occupied cell;
FP = Frame Pointer — points to the current stack frame.

Frames are created for predicate calls,

contain cells for each variable of the current clause

236

28 Architecture of the WiM

The Code Store

c O H
0 1 r PC
C = Code store — contains WiM program;
every cell contains one instruction;
PC = Program Counter — points to the next instruction to executed;

235

The Heap CV/ oo

0 1 T DHP

Heap for dynamicly constructed terms;

I
vl
]

Heap-Pointer — points to the first free cell;

e The heap in maintained like a stack as well.

e A new-instruction allocates a object in H.

e Objects are tagged with their types (as in the MaMa) ...

237

atom 1 cell

variable 1 cell
unbound variable 1 cell
e structure (n+1) cells
T (4
- \/‘
-
i}
9@ £ T
, - -~
77 P b

238

A

L L’U U@Q N
SR
ﬁ@ reference to X

240

29 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing.

Assume that the address environment p returns, for each clause variable X its
address (relative to FP) on the stack. Then codey tp should ...

e construct (a presentation of) t in the heap; and
e return a reference to it on top of the stack.
Idea

e Construct the tree during a post-order traversal of ¢

e with one instruction for each new node!

Example t=f(g(X,Y),a,2Z).

Assume that X is initialized, i.e., S[FP+ pX] contains already a reference,
Y and Z are not yet initialized.

239

For a distinction, we mark occurrences of already initialized variables through

overlining (e.g. X).
Note: Arguments are always initialized!

Then we define:

codegap = putatom a code f(t1,...,th)p = codestip

codes Xp = putvar (pX)

codea Xp = putref(pX) codes ty p

codes p = putanon putstruct f/n
241

For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized!

Then we define:

codesap = putatom a codeg f(t1,...,bn)p = codest1p
codega Xp = putvar(pX)

codea Xp = putref(pX) codes ty p
codeq p = putanon putstruct f/n

Fo@g(_, Y),a,Z) and p= {X+{1,¥ > 2,Z v 3} this results in the sequence:

putref 1 putatom a

putvar 2 putvar 3

putstruct g/2 putstruct f/3
242

The instruction putvar i introduces a new unbound variable and additionally

initializes the corresponding cell in the stack frame:
E.‘ '
putv@
N e)
i T
FP —— P —

SP =SP + 1;
S[SP] = new (R, HP);
S[FP + i] = S[SP];

244

The instruction putatom a constructs an atom in the heap:

putatom a

SP++; S[SP] = new (A,a);

243

The instruction putanon introduces a new unbound variable but does not store a

reference to it in the stack frame:

putanon

|

SP=SP+1;
S[SP] = new (R, HP);

ﬁ/%) :Q[(X}\7>
—0 X =

245

The instruction

The instruction

putref i pushes the value of the variable onto the stack:

putrefi
—0 -
FP ——
SP=5P+1;

S[SP] = deref S[FP +i];

246

putstruct f/n builds a constructor application in the heap:

€ z

n - -
" _ _
Lo putstruct f/n

.&. I |——=[S]f/n

v=new (5, f, n);
SP=SP-n+1;
for (i=1; i<=n; i++)

HIv +i] = S[SP +i-1];
S[SP] = v;

248

The instruction putref i pushes the value of the variable onto the stack:

utrefi RN
I{Eﬁo — 5O

P —=

SP=SP+1;
S[SP] = deref S[FP + i];

The auxiliary function deref contracts chains of references:

ref deref (ref v) {
if (H[v]==(R,w) && v'!=w) return deref (w);
else return v;

247

Remarks

e The instruction putref i does not just push the reference from S[FP + i] onto the
stack, but also dereferences it as much as possible

—— maximal contraction of reference chains.

¢ In constructed terms, references always point to smaller heap addresses.

Also otherwise, this will be often the case. Sadly enough, it cannot be
guaranteed in general.

249

30 The Translation of Literals

Idea

e Literals are treated as procedure calls.

e We first allocate a stack frame.

e Then we construct the actual

parameters (in the heap)

e ... and store references to these into the stack frame.

e Finally, we jump to the code for the procedure/predicate.

codec pty,...,) p =

LV

Example pla, X, g(X,Y)
We obtain:

mark B

putatom a

putvar 1

250
mark B // allocates the stack frame
codeg h p
codey l p
call p/k // calls the procedure p/k

) with p={Xr+1Y 2}

putref 1 call p/3
putvar 2 B:
putstruct g/2

252

codeg p(ty, .., k) p =

Stack Frame of the WiM

codes t1 p

codey ty p
call p/k

251

sp

FP —

[)().‘-E)Ill.

FPold

-
o

P—

SEEES

“‘-\&“S\

i ——

253

// allocates the stack frame

// calls the procedure p/k

I local stack

local variables

6 org. cells

Remarks The instruction mark B allocates a new stack frame:

e The positive continuation address records where to continue after successful mark B

treatment of the goal.

e Additional organizational cells are needed for the implementation of backtracking

= will be discussed at the translation of predicates. FP — FP —>

SP=5P +6;
S[SP] = B; S[SP-1] = FP;

254 255

The instruction call p/n calls the n-ary predicate p :

call p/n 31 Unification
n
Convention
FP ——=
PCEI | PC[pa] e By X, we denote an occurrence of X;

— it will be translated differently depending on whether the variable is initialized or

not.
FP =SP-n; . -
PC=p/n; ¢ We introduce the macro put X p
put Xp = putvar (pX)
put __ p = putanon
put Xp = putref (pX)

256 257

Let us translate the unification X =1 . Let us translate the unification X =1t .

Idea 1 Idea 1
e Push a reference to (the binding of) X onto the stack; e Push a reference to (the binding of) X onto the stack;
e Construct the term f in the heap; e Construct the term t in the heap;
e Invent a new instruction implementing the unification. ¢ Invent a new instruction implementing the unification!
codec (X=1t)p = putXp
codey t p
unify
258 259
Example The instruction unify calls the run-time function unify() for the topmost

two references:

Consider the equation:

o= f{g(}_(,}’),a,z)
Then we obtain for an address environment unify
p={X—=1,Y—2Z—3 U4}

putref 4 putref 1 putatom a unify ify (S[SP-1], S[SP]);
putvar 2 putvar 3 SP = SP-2;

putstruct g/2 putstruct f/3

260 261

The Function unify() ; a é >

... takes two heap addresses. Eg E 7%\ - qé

For each call, we guarantee that these are maximally de-referenced.

... checks whether the two addresses are already identical.
If so, does nothing.

... binds younger variables (larger addresses) to older variables (smaller
addresses);

... when binding a variable to a term, checks whether the variable occurs inside
the term =—= occur-check;

.. records newly created bindings;

... may fail. Then backtracking is initiated.

262

bool unify (ref u, ref v) {
if (u == v) return true;
if (H[u] == (R,_)) {
if (H[v] == (R,_)) {
if (wv) {
H[u] = (R,v); trail (u); return true;
} else {
H[v] = (R,u); trail (v); return true;
}
} elseif (check (u,v)) {
H[ul = (R,v); trail (u); return true;
} else {

backtrack(); return false;

263

bool unify (ref u, ref v) {

if (u == v) return true;
if (Hlul = (R,.)) {
if (H[v] == (R,.)) {

if (u>v) {

Hlu]l = (R,v); trail (u); return true;
} else {

Hlv] = (R,u); trail (v); return true;
¥

} elseif (check (u,v)) {

H[u] = (R,v); trail (u); return true;
} else {

backtrack(); return false;

263

bool unify (ref u, ref v) {

if (u == v) return true;
if (Hlul == (R,.)) {
if (HLv] == (R,.)) {

if (u>v) {
H[ul = (R,v); trail (u); return true;
} else {

Hlv] = (R,u); trail (v); return true;
}
} elseif (check (u,v)) {
H[u] = (R,v); trail (u); return true;
} else {

backtrack(); return false;

263

if ((H[v] == R,.)) {

}

if (check (v,u)) {
Hlv] = (R,u); trail (v); return true;
} else {
backtrack(); return false;
}
}
if (H[ul==(Afa)) && H[v]==(A@)

return true;
if (H[ul==(S, zf/n> & II[V’]==(S,@) {

for (int i i<z@ i++)
if(lunify (deref (H[u+il), deref (H[v+i])) return false;
return true;
}

backtrack(); return false;

264
N\
—[R[
=[Al a
S|f2
y)
R)
LI E
S|f2

267

S| fi2

S| fi2
266
_\)
R]
= A uJ
S|f2 s

S|f2

268

The run-time function trail() records the a potential new binding.

The run-time function backtrack() initiates backtracking.

The auxiliary function che¢k() performs the occur-check: it tests

whether a variable (the first grgument) occurs inside a term (the second

argument).

Often, this check is skipped, i.e.,

bool check (ref u, ref v) { return true;}

270

S|f2

S|f2

269

