Script generated by TTT

Title: Seidl: Virtual_Machines (03.05.2016)
Date: Tue May 03 10:28:20 CEST 2016
Duration: 85:17 min

Pages: 37

codey (€' eg ... em—1)psd = mark A // Allocation of the frame

codge em—1 0 (sd +3)
codec ey-a p (sd +4)

CLF"KC codec ep p (sd +m+2)
—
AV

codey € p (sd +m+3) // Evaluation of ¢’
apply /[corresponds to call
A:

To implement CBV, we use codey instead of codec for the arguments e;.

Example For (f42), p= {f ~+ (L,2)} and sd = 2, we obtain with CBV:
2 mark 6 mkbasic 7 apply
5 lcadc 42 6 pushloc 4 A oL

140

17 Function Application

Function applications correspond to function calls in C.
The necessary actions for the evaluation of € ey ... &,_1 are:

e Allocation of a stack frame;

e Transfer of the actual parameters , i.e. with:
CBV: Evaluation of the actual parameters;
CBN: Allocation of closures for the actual parameters;

e Evaluation of the expression e’ to an F-object;

e Application of the function.

Thus for CBN,

139

A Slightly Larger Example

Ieta:l?inle@:funbﬂa+b nfa2

For CBV and sd =0 we obtain:

0 loadc 17 2 jump B 2 getbasic 5 loadc 42

1 mkbasic 0 A targl 2 add 6 mkbasic

1 pushloc0 0 pushglob 0 1 mkbasic 6 pushloc 4
2 mkvec 1 1 getbasic 1 return 1 7 apply

2 mkfunval A 1 pushlocl 2 B: makkC 3 C slide 2

- |
A

For the implementation of the new instruction, we must fix the organization of a

stack frame:

SP———

FP ———= PCold

FPold

GPold

{ local stack
Arguments
0
-1 3 org. cells
-2
142

The instruction apply unpacks the F-object, a reference to which (hopefully)
resides on top of the stack, and continues execution at the address given there:

G [} =V
b

h =S[SP];

if (H[h] = (E_._))
Error “no fun”;

else |

. B
GP = h—gp; PC =h—cp;
for (i=0; i< h—ap—n; i++)
S[SP+i] = h—ap—vl[i];
SP =5P +h—ap—n-1;
}

144

Different from the CMa, the instruction mark A already saves the return address:

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;
FP=5P=5P+3;

143

Caveat

e The last element of the argument vector is the last to be put onto the stack.

This must be the first argument reference.

e This should be kept in mind, when we treat the packing of arguments of an
under-supplied function application into an F-object !l

145

targ k is a complex instruction.
We decompose its execution in the case of under-supply into several steps:

18 Over— and Undersupply of Arguments

targ k = if (SP-FP < k) {
mkvecl; // creating the argumentvector
The first instructieq to be executed when entering a function body, i.e., after an wrap; // wrapping into an F — object
apply is targ@ popenv; /{/ popping the stack frame
This instruction checks whether there are enough arguments to evaluate the body. }
Only if this is the case, the execution of the code for the body is started.
Otherwise, i.e. in the case of under-supply, a new F-object is returned. The combination of these steps into one instruction is a kind of optimization.
The test for number of arguments uses: SP - FP
146 147
The instruction mkvecO takes all references from the stack above FP and stores The instruction wrap wraps the argument vector together with the global vector
them into a vector: and PC-1 into an F-object:
Vig
— 2 — wrap
g —

GP——=[V[[]
P([42) PC

SP=FI'+1; S[SP] = new (F, PC-1, S[SP], GP);

for (i=0; i<g; i++)
h—v[i] =S[SP +i];
S[SP] = h;

148 149

The instruction

P —

FP

popenv finally releases the stack frame:

[=[]

GP
PC

—

]

popenv

GP = S[FP-2];
S[FP-2] = S[SP];
PC = S[FP);
SP=FP-2;

FP = S[FP-1];

150

[F[41]

[

vl]

Vim

FP

bl

153

PC
Gp

popenv

Gp []

=V

P

FP —=1

Vim[T [T]

Gr [
PC

FP

152

[Fl41]

P~vl]

VT T T T

I
vl]

154

wrap

e The stack frame can be released after the execution of the body if exactly the

right number of arguments was available.

e |f there is an oversupply of arguments, the body must evaluate to a function,
which consumes the rest of the arguments ...

e The check for this is done by return k:

returnk = if (SP-FP=k+1)
popenv; // Done
else { // There are more arguments
slide k;
apply; // another application
t

The execution of return k results in:

155

Case: Over-supply

- Fl]

slide k apply

ad

INEREANCYE

P —] P —=

157

Case: Done
Gp [] P [—
e [P

{ [{1

popenv

FP

-

156

19 let-rec-Expressions

Consider the expression e =letrecy; =e; and...and y, = e, in ey
The translation of e must deliver an instruction sequence that
o allocates local variables vy, ..., yu;

e in the case of
CBV: evaluates ey,..., e, and binds the y; to their values;
CBN: constructs closures for the ey, ..., e, and binds the y; to them;

evaluates the expression ep and returns its value.

Caveat

In a letrec-expression, the definitions can use variables that will be allocated only
later!l === Dummy-values are put onto the stack before processing the
definition.

158

For CBN, we obtain: €CX* ,—:,Q .f = ﬁf‘ ’k‘a fx
“w. LA

codey epsd = allocn // allocates local variables
codec &1 p’ (sd + n)
rewrite n
codec e, p' (sd +n)
rewrite 1
codey eg p' (sd + n)

slide n // deallocates local variables
where o =p@&{y;— (Lsd+i)|i=1,...,n}.
In the case of CBV, we also use codey for the expressions ey, ..., &,.

Caveat

Recursive definitions of basic values are undefined with CBV!!!

159

The instruction alloc n reserves n cells on the stack and initialises them with #

dummy nodes:

allocn %

for (i=1; i<=n; i++)
S[SP+i] = new (C,-1,-1);
SP=SP +n;

-1|-1
=-1|-1
-1]-1
-1]-1

slislislie!

161

Example

Consider the exprefsion

e=letrek f |fun xy — if y <1 then x else f(x*y)(y — 1)|i
for p = and sd = 0. We obtain (for CBV):

0 alloc1 0 A targ? 4 loadc 1

1 “pushloc 0 0 5 mkbasic

2 mkvec 1 1 return 2 5 | pushloc 4
2 mkfunyal A 2 rewrite 1 6 | apply I
2 jump@ 1 mark C 2 G slidel

Sf‘: EF—‘)((MW

160

The instruction rewrite n overwrites the contents of the heap cell pointed to by
the reference at S[SP-n]:

S
Lt

rewriten

HIS[SP-n]] = H[S[SP]};
SP=SP-1;

e The reference S[SP — n] remains unchanged!

¢ Only its contents is changed!

162

20 Closures and their Evaluation

e Closures are needed in the implementation of CBN for let-, let-rec expressions

as well as for actual paramaters of functions.

e Before the value of a variable is accessed (with CBN), this value must be

available.
e Otherwise, a stack frame must be created to determine this value.

e This task is performed by the instruction eval.

163

mark0 —

]
A
P = o —N1T7 Fr =GP [=[]
i C [17] PC

S[SP+1] = GP;
S[SP+2] = EP;
S[SP+3] = PC;
FP=SP=5P +3;

165

eval can be decomposed into small actions:

eval = if (H[S[SP]|=(C,_, _)){

// allocation of the stack frame
// copying of the reference

// corresponds to apply

e A closure can be understood as a parameterless function. Thus, there is no need

for an ap-component.

e Evaluation of the closure means evaluation of an application of this function to 0

arguments.
e In constrast to mark A, mark0 dumps the current PC.

e The difference between apply and apply0 is that no argument vector is
put on the stack.

164

PC

h =S[SP]; SP--;
GP = h—gp; PC = h—cp;

We thus obtain for the instruction eval:

166

1 17
mark0

PC [17] | PC[17]

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = PC;
FP =SP=5P +3;

165

cp gp cp gp

cla2] fF—{v[[]

-
e E Y B i FP Jmmﬂm

Tl =1

pC [] PC

h =S[SP]; SP--;
GP =h—gp; PC =h—cp;

We thus obtain for the instruction eval:

166

apply0
or [PPy B c.;l’l:l—T

Different from the CMa, the instruction mark A already saves the return address:

mark A

G []

S[SP+1] = GP;
S[SP+2] = FP;

v S[SP+3] = A;

143

cp gp

—={Cla2] =[]

_H O e
FI [e

3 cp gp

(Cle2] =] []
Gp [3]

PC | 17

167

i

o oemm

mark0

pushloc 3

The construction of a closure for an expression e consists of:

E e Packing the bindings for the free variables into a vector;
3| Y ¢ gp e Creation of a C-object, which contains a reference to this vector and to the code
: cl42] =l [| apply0 for the evaluation of e:
codecepsd = getvar zy p sd
FP L or getvar z; p (sd+ 1)
PC

getvar z;_1 p (sd+g—1)

mkvec g

[c[a2] |—={v[[]

jump B
GP D—T A: codeyep’' 0

B:

where {zq,...,2z;1} =free(e) and p' ={z;— (G,i)|i=0,...,g—1}.

168 169

Example e The instruction mkclos A is analogous to the instruction mkfunval A.

o |t generates a C-object, where the included code poinfer

Consider e =a*a with p= {a+ (L,0)} and sd = 1. We obtain:

1 pushloc 1 0 A: pushglob 0 2 getbasic mkcelog
2 mkvecl 1 eval 2 mul ——={V[]
2 mkclos A 1 getbasic 1 mkbasic
2 jumpB 1 pushglob 0 1 update
2 2 B: —

S[SP] = new (C, A, S[SP]);

170 171

In fact, the instruction update is the combination of the two actions:

popenv
rewrite 1

It overwrites the closure with the computed-value.

FP ——>—|; FP
—’: update
19
=[] {1]

b [32]
GP

172

In fact, the instruction update is the combination of the two actions:
popenv
rewrite 1

It overwrites the closure with the computed value.

P —=42| FP
update

| ——{c["T]]

— e [72]
T | GP

172

