The general principle:

- Instructions expect their arguments on top of the stack.
- Execution of an instruction consumes its operands.
- Results, if any, are stored on top of the stack.

Instruction loadq needs no operand on top of the stack, pushes the constant q onto the stack.

Note: the content of register SP is only implicitly represented, namely through the height of the stack.

Example:

The operator leq

Remark: 0 represents false, all other integers true.

Unary operators neg and not consume one operand and produce one result.

mul expects two operands on top of the stack, consumes both, and pushes their product onto the stack.

... the other binary arithmetic and logical instructions, $\text{add, sub, div, mod, and, or}$ and xor, work analogously, as do the comparison instructions $\text{eq, neq, le, leq, gr}$ and geq.
Example: Code for $1 + 7$:

```
load: 1  load: 7  add
```

Execution of this code sequence:

```
  1  7  8
```

Example: Code for $(1 + 7) \times 3$

```
load: 1  load: 7  add
```

tab <mult>

Execution of this code sequence:

```
  1  7  8
```

Variables can be used in two different ways:

Example: $x = y + 1$

We are interested in the \textit{value} of y, but in the \textit{address} of x.

The syntactic position determines, whether the L-value or the R-value of a variable is required.

<table>
<thead>
<tr>
<th>L-value of x</th>
<th>address of x</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-value of x</td>
<td>content of x</td>
</tr>
</tbody>
</table>

\texttt{code}_{\ell} \rho$ produces code to compute the R-value of ℓ in the address environment ρ.

\texttt{code}_{\ell} \rho$ analogously for the L-value.

Note:

Not every expression has an L-value (Ex.: $x + 1$).
Variables are associated with cells in S:

- x
- y
- z

Code generation will be described by some Translation Functions, code, code$_l$, and code$_r$.

Arguments: A program construct and a function ρ, ρ delivers for each variable x the relative address of x, ρ is called Address Environment.

Variables can be used in two different ways:

Example: $x = y + 1$

We are interested in the value of y, but in the address of x.

The syntactic position determines, whether the L-value or the R-value of a variable is required.

<table>
<thead>
<tr>
<th>Code generation</th>
<th>Produces code to compute the R-value of e in the address environment ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>code$_r$ e ρ</td>
<td>analogous for the L-value</td>
</tr>
</tbody>
</table>

Note:

Not every expression has an L-value (Ex.: $x + 1$).

We define:

\[
\begin{align*}
\text{code$_r$} \ (e_1 + e_2) \ \rho &= \ \text{code$_r$} \ e_1 \ \rho \\
&\quad \text{code$_r$} \ e_2 \ \rho \\
&\quad \text{add} \\
&\quad \ldots \ \text{analogously for the other binary operators} \\
\text{code$_r$} \ (-e) \ \rho &= \ \text{code$_r$} \ e \ \rho \\
&\quad \text{neg} \\
&\quad \ldots \ \text{analogously for the other unary operators} \\
\text{code$_r$} \ q \ \rho &= \ \text{loadc} \ q \\
\text{code$_l$} \ x \ \rho &= \ \text{loadc} \ (\rho \ x)
\end{align*}
\]

The instruction **load** loads the contents of the cell, whose address is on top of the stack.

|$S[\text{SP}] = S[\text{SP}]$;
\[
\text{code}_x \cdot \rho = \text{code}_y \cdot \rho
\]

\[
\text{load}
\]

The instruction \text{load} loads the contents of the cell, whose address is on top of the stack.

\[
[S] = [S[S]_x];
\]

\[
\text{code}_x (x = c) \cdot \rho = \text{code}_x \epsilon \cdot \rho
\]

\[
\text{code}_x \cdot \rho
\]

\[
\text{store}
\]

\[
\text{store}
\]

\[
[S] = [S[S]_x];
\]

\[
\text{SP} \leftarrow 1
\]

\[
\text{Example: Code for } e \equiv x = y - 1 \text{ with } \rho = \{x \mapsto 4, y \mapsto 7\}.
\]

\[
\begin{array}{c}
\text{loadc 7} \\
\text{loadc 1} \\
\text{loadc 4}
\end{array}
\]

\[
\begin{array}{c}
\text{load} \\
\text{add} \\
\text{store}
\end{array}
\]

Improvements:

Introduction of special instructions for frequently used instruction sequences, e.g.,

\[
\begin{array}{c}
\text{loada} q = \text{loadc} q \\
\text{storea} q \leftarrow \text{loadc} q
\end{array}
\]

3 Statements and Statement Sequences

If \(e \) is an expression, then \(e \) is a statement.

Statements do not deliver a value. The contents of the SP before and after the execution of the generated code must therefore be the same.

\[
\text{code } e ; \cdot \rho = \text{code}_e \cdot \rho
\]

\[
\begin{array}{c}
\text{pop}
\end{array}
\]

The instruction \text{pop} eliminates the top element of the stack.
3 Statements and Statement Sequences

If e is an expression, then $e;^r$ is a statement.

Statements do not deliver a value. The contents of the SP before and after the execution of the generated code must therefore be the same.

The instruction `pop` eliminates the top element of the stack.

4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:
4 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

```
P.C = A;
```

```
if (S[SP] == 0) PC = A;
SP--;
```
4.1 One-sided Conditional Statement

Let us first regard $s = \text{if } (e) s'$.

Idea:
- Put code for the evaluation of e and s' consecutively in the code store,
- Insert a conditional jump (jump on zero) in between.

\[
\text{code } s \
ho = \begin{cases} \text{code}_e \
ho \\
\text{jumpz } A \\
\text{code } s' \
ho \\
A : \ldots
\end{cases}
\]
4.2 Two-sided Conditional Statement

Let us now regard \(s \equiv \text{if}(e) \ s_1 \text{else} \ s_2 \). The same strategy yields:

\[
\text{code } s \rho = \begin{cases}
\text{code}_e e \rho \\
\text{jump } A \\
\text{code } s_1 \rho \\
\text{jump } B \\
A : \text{code } s_2 \rho \\
B : \ldots
\end{cases}
\]

Example:

Be \(\rho = \{ x \rightarrow 4, y \rightarrow 7 \} \) and

\[
s = \begin{cases}
\text{if}(x > y) \\
x = x - y; \\
\text{else } y = y - x;
\end{cases}
\]

\[
\text{code } s \rho \text{ produces:}
\]

\[
\begin{align*}
(\text{i}) & : \text{loada } 4 \\
(\text{ii}) & : \text{loada } 7 \\
(\text{iii}) & : \text{loada } 7
\end{align*}
\]

4.3 while-Loops

Let us regard the loop \(s = \text{while}(e) \ s' \). We generate:

\[
\text{code } s \rho = \begin{cases}
\text{code}_e e \rho \\
\text{jump } A \\
\text{code } s' \rho \\
\text{jump } A \\
A : \text{code } s' \rho \\
B : \ldots
\end{cases}
\]

Example:

Be \(\rho = \{ x \rightarrow 4, y \rightarrow 7 \} \) and

\[
s = \begin{cases}
\text{if}(x > y) \\
x = x - y; \\
\text{else } y = y - x;
\end{cases}
\]

\[
\text{code } s \rho \text{ produces:}
\]

\[
\begin{align*}
(\text{i}) & : \text{loada } 4 \\
(\text{ii}) & : \text{loada } 7 \\
(\text{iii}) & : \text{loada } 7
\end{align*}
\]
Example: \(\rho = \{ x \mapsto 4, y \mapsto 7 \} \) and
\[
\begin{align*}
 s &= \text{if } (x > y) & (i) \\
 & \quad x = x - y; & (ii) \\
 & \quad \text{else } y = y - x; & (iii)
\end{align*}
\]

code \(s \rho \) produces:

\[
\begin{align*}
\text{loada} & \quad \text{loada} 4 & A: \quad \text{loada} 7 \\
\text{loada} 7 & \quad \text{loada} 7 & \text{loada} 4 \\
\text{gr} & \quad \text{sub} & \text{sub} \\
\text{jumpe} & \quad \text{storea} 4 & \text{storea} 7 \\
\text{pop} & \quad \text{pop} & \text{pop} \\
\text{jump} & \quad \text{B:} & \ldots
\end{align*}
\]

(i) \quad (ii) \quad (iii)

4.3 while-Loops

Let us regard the loop \(s = \text{while } (c) \ s' \). We generate:

\[
\begin{align*}
\text{code } s \rho &= \quad \text{code } e \rho \\
A: \quad \text{code } e \rho \\
& \quad \text{jumpe } \\
& \quad \text{code } s' \rho \\
B: \quad \text{jump } A \\
& \quad \text{jump } B \quad \ldots
\end{align*}
\]

4.4 for-Loops

The for-loop \(s = \text{for } (c_1; c_2; c_3) \ s' \) is equivalent to the statement sequence \(c_1 \) while \((c_2) \{s' \ c_3\} \) — provided that \(s' \) contains no continue-statement.

We therefore translate:

\[
\begin{align*}
\text{code } s \rho &= \quad \text{code } c_1 \\
A: \quad \text{code } e_2 \rho \\
& \quad \text{jumpe } \\
& \quad \text{code } s' \rho \\
& \quad \text{code } e_3 \rho \\
B: \quad \text{jump } A \\
& \quad \text{jump } B \quad \ldots
\end{align*}
\]
4.5 The switch-Statement

Idea:
- Multi-target branching in constant time!
- Use a jump table, which contains at its i-th position the jump to the beginning of the i-th alternative.
- Realized by indexed jumps.

```plaintext
PC \rightarrow \text{jumpi B} \rightarrow \text{i + SP[SP]} \rightarrow \text{PC}
```

$\text{PC} \leftarrow \text{i + SP[SP]}$

SP--;