The macro `check 0 k B` checks, whether the R-value of \(e \) is in the interval \([0,k]\), and executes an indexed jump into the table \(B \).

At the end of each alternative is an unconditional jump out of the switch-statement.

Simplification:

We only regard switch-statements of the following form:

\[
s \equiv \text{switch} \ (e) \{
 \text{case 0: } s_{00}, \text{break;}
 \text{case 1: } s_{01}, \text{break;}
 \vdots
 \text{case } k-1: s_{0k-1}, \text{break;}
 \text{default: } s_{0k}
}\]

\(s \) is then translated into the instruction sequence:

\[
\begin{align*}
\text{check 0 k B} & \quad \text{dup} \quad \text{dup} \quad \text{jumpi B} \\
\text{loadc 0} & \quad \text{loadc k} \quad A: \quad \text{pop} \\
\text{eq} & \quad \text{le} \quad \text{loadc k} \\
\text{jumpz A} & \quad \text{jumpz A} \quad \text{jumpi B}
\end{align*}
\]

- The R-value of \(e \) is still needed for indexing after the comparison. It is therefore copied before the comparison.
- This is done by the instruction \(\text{dup} \).
- The R-value of \(e \) is replaced by \(k \) before the indexed jump is executed if it is less than 0 or greater than \(k \).
code $s \rho = \text{code}_{\varepsilon \rho}$
check $0 \leq k \leq B$

C_6: code $s_{0_{\varepsilon}} \rho$
 jump D

\ldots

C_ε: code $s_{s_{\varepsilon}} \rho$
 jump D

- The Macro check $0 \leq k \leq B$ checks, whether the R-value of ε is in the interval $[0,k]$, and executes an indexed jump into the table B
- The jump table contains direct jumps to the respective alternatives.
- At the end of each alternative is an unconditional jump out of the switch-statement.

check $0 \leq k \leq B$

\begin{align*}
\text{check} & \quad \text{dup} \quad \text{dup} \quad \text{jumpi} \quad B \\
& \quad \text{loadc} \quad \text{loadc} \quad \text{A} \quad \text{pop} \\
& \quad \text{geq} \quad \text{le} \quad \text{loadc} \quad \text{k} \\
& \quad \text{jumpz} \quad \text{A} \quad \text{jumpz} \quad \text{A} \quad \text{jumpi} \quad B \\
\end{align*}

- The R-value of ε is still needed for indexing after the comparison. It is therefore copied before the comparison.
- This is done by the instruction dup.
- The R-value of ε is replaced by k before the indexed jump is executed if it is less than 0 or greater than k.

\begin{align*}
\text{check} & \quad \text{dup} \quad \text{dup} \quad \text{jumpi} \quad B \\
& \quad \text{loadc} \quad \text{loadc} \quad \text{A} \quad \text{pop} \\
& \quad \text{geq} \quad \text{le} \quad \text{loadc} \quad \text{k} \\
& \quad \text{jumpz} \quad \text{A} \quad \text{jumpz} \quad \text{A} \quad \text{jumpi} \quad B \\
\end{align*}

- The R-value of ε is still needed for indexing after the comparison. It is therefore copied before the comparison.
- This is done by the instruction dup.
- The R-value of ε is replaced by k before the indexed jump is executed if it is less than 0 or greater than k.

S[SP+1] = S[SP];
SP++;
Note:
The jump table could be placed directly after the code for the Macro check. This would save a few unconditional jumps. However, it may require to search the switch-statement twice.

- If the table starts with u instead of 0, we have to decrease the R-value of e by u before using it as an index.
- If all potential values of e are \textit{definitely} in the interval $[0, k]$, the macro check is not needed.

Note:
The jump table could be placed directly after the code for the Macro check. This would save a few unconditional jumps. However, it may require to search the switch-statement twice.

- If the table starts with u instead of 0, we have to decrease the R-value of e by u before using it as an index.
- If all potential values of e are \textit{definitely} in the interval $[0, k]$, the macro check is not needed.

The Macro check $0 \leq k \leq B$ checks, whether the R-value of e is in the interval $[0, k]$, and executes an indexed jump into the table B.

The jump table contains direct jumps to the respective alternatives.

At the end of each alternative is an unconditional jump out of the switch-statement.
code \(s \rho \) = code \(e \rho \) check 0 \(k \) B

\[\begin{align*}
C_0: & \quad \text{jump } D \\
C_1: & \quad \text{jump } \ldots \\
C_2: & \quad \text{jump } D
\end{align*}\]

- The Macro check \(0 \leq k \) B checks, whether the R-value of \(e \) is in the interval \([0, k]\), and executes an indexed jump into the table \(B \).
- The jump table contains direct jumps to the respective alternatives.
- At the end of each alternative is an unconditional jump out of the switch-statement.

5 Storage Allocation for Variables

Goal:

Assume statically, i.e. at compile time, with each variable \(a \) a fixed (relative) address \(\rho a \)

Assumptions:

- variables of basic types, e.g. int, … occupy one storage cell.
- variables are allocated in the store in the order, in which they are declared, starting at address 1.

Consequently, we obtain for the declaration \(d = t_1 x_1; \ldots; t_i x_i \) (\(t_i \) basic type) the address environment \(\rho \) such that

\[\rho x_i = i, \quad i = 1, \ldots, k\]

Note:

- The jump table could be placed directly after the code for the Macro check. This would save a few unconditional jumps. However, it may require to search the switch-statement twice.
- If the table starts with \(\alpha \) instead of 0, we have to decrease the R-value of \(\epsilon \) by \(\alpha \) before using it as an index.
- If all potential values of \(\epsilon \) are definitely in the interval \([0, k]\), the macro check is not needed.

5.1 Arrays

Example: \(\text{int [11] } a; \)

The array \(a \) consists of 11 components and therefore needs 11 cells.

\[\begin{align*}
& a[10] \\
& \vdots \\
& a[0]
\end{align*}\]
5.1 Arrays

Example: \texttt{int [11] a;}

The array \texttt{a} consists of 11 components and therefore needs 11 cells.
\(\rho a \) is the address of the component \(a[0] \).

\begin{align*}
\texttt{a[10]} \\
\vdots \\
\texttt{a[0]}
\end{align*}

We need a function \texttt{sizeof} (notation: \texttt{\textbackslash{}cdot \textbackslash{}cdot}), computing the space requirement of a type:

\[|t| = \begin{cases}
1 & \text{if } t \text{ basic} \\
|k| & \text{if } t = t'[k]
\end{cases} \]

Accordingly, we obtain for the declaration \(d \equiv t_1 \ x_1; \ldots; t_k \ x_k; \)

\[\rho x_1 = 1 \]

\[\rho x_i = \rho x_{i-1} + |t_{i-1}| \quad \text{for } i > 1 \]

Since \texttt{\textbackslash{}cdot \textbackslash{}cdot} can be computed at compile time, also \(\rho \) can be computed at compile time.

Task:

Extend \texttt{code_1} and \texttt{code_2} to expressions with accesses to array components.

Be \(t[c] \ a; \) the declaration of an array \(a \).

To determine the start address of a component \(a[i] \), we compute

\(\rho a + |t| \) (R-value of \(t \)).

In consequence:

\begin{align*}
\text{code_1, a[i]} \quad \rho & = \quad \text{loadc} (\rho a) \\
\text{code_2} \quad e \quad \rho & = \quad \text{loadc} [t]\text{mul} \\
\text{add} & \quad \text{or more general:}
\end{align*}
Task:

Extend \texttt{code}_1 and \texttt{code}_2 to expressions with accesses to array components.

Be \(t[i] \) \(a \) the declaration of an array \(a \).

To determine the start address of a component \(a[i] \), we compute \(\rho a + |t| \) (R-value of \(t \)).

In consequence:

\[
\text{code}_2 e[a] \rho = \text{loadc} (\rho a) \\
\text{code}_2 e \rho \\
\text{loadc} |t| \\
mul \\
add
\]

... or more general:

\[
\text{code}_2 e_1[e_2] \rho = \text{code}_2 e_1 \rho \\
\text{code}_2 e_2 \rho \\
\text{loadc} |t| \\
mul \\
add
\]

Remark:

- In C, an array is a \texttt{pointer}. A declared array \(a \) is a \texttt{pointer-constant}, whose R-value is the start address of the array.
- Formally, we define for an array \(e \): \(\text{code}_1 e \rho = \text{code}_1 e \rho \)
- In C, the following are equivalent (as L-values):
 \[
 2[a] \quad a[2] \quad a + 2
 \]

Normalization: Array names and expressions evaluating to arrays occur in front of index brackets, index expressions inside the index brackets.

\[
\text{code}_1 e_1[e_2][\rho] = \text{code}_1 e_2[\rho]
\]

5.2 Structures

In \texttt{Modula} and \texttt{Pascal}, structures are called Records.

Simplification:

Names of structure components are not used elsewhere. Alternatively, one could manage a separate environment \(\rho_\text{st} \) for each structure type \(\text{st} \).

Be \(\text{struct} \{ \text{int} a; \text{int} b; \} x; \) part of a declaration list.
- \(x \) has as relative address the address of the first cell allocated for the structure.
- The components have addresses relative to the start address of the structure.
 In the example, these are \(a \leftrightarrow 0, b \leftrightarrow 1 \).
Let $t = \{ t_1, c_1; \ldots; t_k, c_k \}$. We have

$$|t| = \sum_{i=1}^{k} |t_i|$$

$\rho c_1 = 0$ and

$\rho c_i = \rho c_{i-1} + |t_{i-1}| \text{ for } i > 1$

We thus obtain:

\[
\begin{align*}
\text{code}_{\ell}(x.c) & \quad \rho \quad = \quad \text{code}_{\ell} \; \rho \\
& \quad \text{loadc}(\rho \circ c) \\
& \quad \text{add}
\end{align*}
\]

Example:

Be $\text{struct} \{ \text{int } a; \text{ int } b; \} \ x$ such that $\rho = \{ x \mapsto 13, a \mapsto 0, b \mapsto 1 \}$. This yields:

\[
\begin{align*}
\text{code}_{\ell}(x.b) \; \rho & \quad = \quad \text{loadc } 13 \\
& \quad \text{loadc } 1 \\
& \quad \text{add}
\end{align*}
\]

6 Pointer and Dynamic Storage Management

Pointer allow the access to anonymous, dynamically generated objects, whose
life time is not subject to the LIFO-principle.

We need another potentially unbounded storage area H – the Heap.

\[
\begin{array}{c}
\text{SP} \\
0 \\
\text{EP} \\
\text{NP} \\
\text{MAX}
\end{array}
\]

NP \Downarrow New Pointer; points to the lowest occupied heap cell.
EP \Downarrow Extreme Pointer; points to the uppermost cell, to which SP can point (during execution of the actual function).

Idea:

- Stack and Heap grow toward each other in S, but must not collide. (Stack Overflow).
- A collision may be caused by an increment of SP or a decrement of NP.
- EP saves us the check for collision at the stack operations.
- The checks at heap allocations are still necessary.
What can we do with pointers (pointer values)?
- set a pointer to a storage cell,
- dereference a pointer, access the value in a storage cell pointed to by a pointer.

There are two ways to set a pointer:

1. A call `malloc(e)` reserves a heap area of the size of the value of `e` and returns a pointer to this area:

   ```
   code_R malloc(e) ρ = code_R e ρ
   ```

2. The application of the address operator `&` to a variable returns a pointer to this variable, i.e. its address (≡ L-value). Therefore:

   ```
   code_R (&e) ρ = code_L e ρ
   ```

Derereferencing of Pointers:

The application of the operator `*` to the expression `e` returns the contents of the storage cell, whose address is the R-value of `e`:

```
code_L (*e) ρ = code_R e ρ
```

Example:

Given the declarations

```c
struct t { int a[7]; struct t *b; };  
int i, j;  
struct t *pt;
```

and the expression `((pt->b) -> a)[i + 1]`

Because of

```c
 e → a ≡ (*e).a 
```

holds:

```c
 code_L (e → a) ρ = code_R e ρ  
loadc (ρa)  
add
```

Dereferencing of Pointers:

The application of the operator `*` to the expression `e` returns the contents of the storage cell, whose address is the R-value of `e`:

```
code_L (*e) ρ = code_R e ρ
```

Example:

Given the declarations

```c
struct t { int a[7]; struct t *b; };  
int i, j;  
struct t *pt;
```

and the expression `((pt → b) → a)[i + 1]`

Because of

```c
 e → a ≡ (*e).a 
```

holds:

```c
 code_L (e → a) ρ = code_R e ρ  
loadc (ρa)  
add
```