Script generated by TTT

Title: groh: profile1 (24.06.2015)
Date: Wed Jun 24 08:22:06 CEST 2015
Duration: 79:22 min
Pages: 106

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:

- \(s_i \in S_i \) „other player’s strategies“

- Short notation: \((s'_1, s'_2) := (s_1, \ldots, s_{i-1}, s'_i, s_{i+1}, \ldots, s_n)\)

- Same for mixed strategies: \((\sigma'_1, \sigma'_2) := (\sigma_1, \ldots, \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, \ldots, \sigma_n)\)

Definition:

- Pure strategy \(s_i \) is **strictly dominated** for player i if \(\sigma'_i \) exists so that \(u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i}) \) for all \(s_{-i} \in S_{-i} \)

- ... weakly dominated:

 \(u_i(\sigma'_i, s_{-i}) \geq u_i(s_i, s_{-i}) \) for all \(s_{-i} \in S_{-i} \) (and \(> \) for at least one \(s_{-i} \))

- If \(u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i}) \) for all \(s_{-i} \in S_{-i} \), we also have

 \(u_i(\sigma'_i, \sigma_{-i}) > u_i(s_i, \sigma_{-i}) \) for all \(\sigma_{-i} \in S_{-i} \), because \(u_i(\sigma'_i, \sigma_{-i}) \) is a convex function of \(u_i(\sigma'_i, s_{-i}), u_i(s'_i, s_{-i}), u_i(\sigma'_i, s'_{-i}), \ldots \).

Notation: Strategic Form Games

- **Two Player zero sum game:**

 \[\forall s : \sum_{i=1}^{2} u_i(s) = 0 \]

- Structure of game is common knowledge:

 all players know;
 all players know that all players know;
 all players know that all players know that all players know;
 ...

- **Mixed strategy** \(\sigma_i : S_i \rightarrow [0,1] \):

 Probability distribution over pure strategies (statistically independent for each player);

 Examples: \(\sigma_i(U) = 1/3, \ \sigma_i(M) = 2/3, \ \sigma_i(D) = 0; \)

 \(\sigma'_i(U) = 2/3, \ \sigma'_i(M) = 1/6, \ \sigma'_i(D) = 1/6; \)

 Thus: \(\sigma_i(s_i) \) is the probability that player i assigns to strategy (action) \(s_i \)

Notation: Strategic Form Games

- **Two Player zero sum game:**

 \[\forall s : \sum_{i=1}^{2} u_i(s) = 0 \]

- Structure of game is common knowledge:

 all players know;
 all players know that all players know;
 all players know that all players know that all players know;

- **Mixed strategy** \(\sigma_i : S_i \rightarrow [0,1] \):

 Probability distribution over pure strategies (statistically independent for each player);

 Examples: \(\sigma_i(U) = 1/3, \ \sigma_i(M) = 2/3, \ \sigma_i(D) = 0; \)

 \(\sigma'_i(U) = 2/3, \ \sigma'_i(M) = 1/6, \ \sigma'_i(D) = 1/6; \)

 Thus: \(\sigma_i(s_i) \) is the probability that player i assigns to strategy (action) \(s_i \)
Two Player zero sum game:
\[\forall S : \sum_{i=1}^{2} u_i(s) = 0 \]

Structure of game is common knowledge:
all players know;
all players know that all players know;
all players know that all players know that all players know;

Mixed strategy \(\sigma_i : S_i \rightarrow [0,1] \) Probability distribution over pure strategies (statistically independent for each player);
Examples:
\(\sigma_1(U) = 1/3, \sigma_1(M) = 2/3, \sigma_1(D) = 0 \);
\(\sigma_1'(U) = 2/3, \sigma_1'(M) = 1/6, \sigma_1'(D) = 1/6 \);

Thus: \(\sigma_i(s_j) \) is the probability that player \(i \) assigns to strategy (action) \(s_j \).

Example:
Let
\[\sigma_1(U) = 1/3, \quad \sigma_1(M) = 1/3, \quad \sigma_1(D) = 1/3 \]
\[\sigma_2(L) = 0, \quad \sigma_2(M) = 1/2, \quad \sigma_2(R) = 1/2 \]
or short
\[\sigma_1 = (1/3, 1/3, 1/3) \]
\[\sigma_2 = (0, 1/2, 1/2) \]

We then have:
\[u_1(\sigma_1, \sigma_2) = 1/3 (0*4 + 1/2*5 + 1/2*6) + 1/3 (0*2 + 1/2*8 + 1/2*3) + 1/3 (0*3 + 1/2*9 + 1/2*2) = 11/2 \]
\[u_2(\sigma_1, \sigma_2) = ... = 27/6 \]
Games in Strategic Form & Nash Equilibrium

What is rational to do?

- No matter what player 1 does: R gives player 2 a strictly higher payoff than M.
- "M is strictly dominated by R"
- \(\rightarrow \) player 1 knows that player 2 will not play M \(\rightarrow U \) is better than M or D

\[\begin{array}{c|ccc}
 & L & M & R \\
\hline
U & 4, 3 & 5, 1 & 6, 2 \\
M & 2, 1 & 8, 4 & 3, 6 \\
D & 3, 0 & 9, 6 & 2, 8 \\
\end{array} \]

- \(\rightarrow \) player 2 knows that player 1 knows that player 2 will not play M \(\rightarrow \) player 2 knows that player 1 will play U \(\rightarrow \) player 2 will play L

This elimination process: "iterated strict dominance"

Is outcome dependent on elimination order?

No! If \(s_i \) is strictly worse than \(s_i' \) against opponent’s strategy in set D then \(s_i \) is strictly worse than \(s_i' \) against opponent’s strategy in any subset of D

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - \(s_i \in S_i \): “other player’s strategies”
 - Short notation: \((s_i', s_{-i}) := (s_1, \ldots, s_{i-1}, s_i', s_{i+1}, \ldots, s_n) \)
 - Same for mixed strategies: \((\sigma_i', \sigma_{-i}) := (\sigma_1, \ldots, \sigma_{i-1}, \sigma_i', \sigma_{i+1}, \ldots, \sigma_n) \)

Definition:

- Pure strategy \(s_i \) is strictly dominated for player i if \(s_i' \) exists so that \(u_i(s_i', s_{-i}) > u_i(s, s_{-i}) \) for all \(s_i \in S_i \)
- ... weakly dominated:
 - \(u_i(s_i', s_{-i}) \geq u_i(s, s_{-i}) \) for all \(s_i \in S_i \) (and \(> \) for at least one \(s_i \))
 - If \(u_i(s_i', s_{-i}) > u_i(s_i, s_{-i}) \) for all \(s_i \in S_i \) we also have
 - \(u_i(s_i', \sigma_{-i}) > u_i(s_i, \sigma_{-i}) \) for all \(\sigma_{-i} \in S_{-i} \) because
 - \(u_i(s_i', \sigma_{-i}) \) is a convex function of \(u_i(s_i', s_{-i}), u_i(s_i', s_{-i}', \ldots), u_i(s_i', s_{-i'', \ldots}) \)....

Games in Strategic Form & Nash Equilibrium

More Notation:

- Discussing player i’s strategy-options, holding other player’s options fixed:
 - \(s_i \in S_i \): “other player’s strategies”
 - Short notation: \((s_i', s_{-i}) := (s_1, \ldots, s_{i-1}, s_i', s_{i+1}, \ldots, s_n) \)
 - Same for mixed strategies: \((\sigma_i', \sigma_{-i}) := (\sigma_1, \ldots, \sigma_{i-1}, \sigma_i', \sigma_{i+1}, \ldots, \sigma_n) \)

Definition:

- Pure strategy \(s_i \) is strictly dominated for player i if \(s_i' \) exists so that
- \(u_i(s_i', s_{-i}) > u_i(s, s_{-i}) \) for all \(s_i \in S_i \)
- ... weakly dominated:
 - \(u_i(s_i', s_{-i}) \geq u_i(s, s_{-i}) \) for all \(s_i \in S_i \) (and > for at least one \(s_i \))
 - If \(u_i(s_i', s_{-i}) > u_i(s_i, s_{-i}) \) for all \(s_i \in S_i \) we also have
 - \(u_i(s_i', \sigma_{-i}) > u_i(s_i, \sigma_{-i}) \) for all \(\sigma_{-i} \in S_{-i} \) because
 - \(u_i(s_i', \sigma_{-i}) \) is a convex function of \(u_i(s_i', s_{-i}), u_i(s_i', s_{-i}', \ldots), u_i(s_i', s_{-i'', \ldots}) \)....

Games in Strategic Form & Nash Equilibrium

What about dominated mixed strategies?

- Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated
- But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 3</td>
<td>-2, 0</td>
</tr>
<tr>
<td>M</td>
<td>-2, 0</td>
<td>1, 3</td>
</tr>
<tr>
<td>D</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

Example:

- U and M are not dominated by D for player 1
- But: Playing \(\sigma_1 = (\frac{1}{2}, \frac{1}{2}, 0) \) gives expected utility \(u_1(\sigma_1, \sigma_{-1}) = 1/2 \) no matter what 2 plays \(\rightarrow D (\sigma_0 = (0, 0, 1)) \) dominates \(\sigma_1 \)
Games in Strategic Form & Nash Equilibrium

- What about dominated mixed strategies?
 - Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated.
 - But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 3</td>
<td>-2, 0</td>
</tr>
<tr>
<td>M</td>
<td>-2, 0</td>
<td>1, 3</td>
</tr>
<tr>
<td>D</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

Example:
- U and M are not dominated by D for player 1.
- But: Playing \(\sigma_1 = (\frac{1}{2}, \frac{1}{2}, 0) \) gives expected utility
 \(u_1(\sigma_1, \sigma_2) = -1/2 \) no matter what 2 plays
 \(D(\sigma_0=(0, 0, 1)) \) dominates \(\sigma_1 \)

Games in Strategic Form & Nash Equilibrium

- What about dominated mixed strategies?
 - Easy: A mixed strategy that assigns positive probabilities to pure strategies that are dominated is dominated.
 - But: A mixed strategy may be dominated even if it assigns positive probabilities to pure strategies that are not even weakly dominated.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 3</td>
<td>-2, 0</td>
</tr>
<tr>
<td>M</td>
<td>-2, 0</td>
<td>1, 3</td>
</tr>
<tr>
<td>D</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

Example:
- U and M are not dominated by D for player 1.
- But: Playing \(\sigma_1 = (\frac{1}{2}, \frac{1}{2}, 0) \) gives expected utility
 \(u_1(\sigma_1, \sigma_2) = -1/2 \) no matter what 2 plays
 \(D(\sigma_0=(0, 0, 1)) \) dominates \(\sigma_1 \)
A note on rationality

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>8, 10</td>
</tr>
<tr>
<td>D</td>
<td>7, 6</td>
</tr>
</tbody>
</table>

- Iterated strict dominance \Rightarrow (U,L)
- BUT: psychology \Rightarrow play D instead of U because "U is unsafe"

A note on rationality

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>8, 10</td>
</tr>
<tr>
<td>D</td>
<td>7, 6</td>
</tr>
</tbody>
</table>

- Iterated strict dominance \Rightarrow (U,L)
- BUT: psychology \Rightarrow play D instead of U because "U is unsafe"
Game Theory ↔ Decision Theory

Example

- Iterated strict dominance $\rightarrow (U,L)$

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1,3</td>
<td>4,1</td>
</tr>
<tr>
<td>D</td>
<td>0,2</td>
<td>3,4</td>
</tr>
</tbody>
</table>

- If player 1 reduces his payoff for U by 2:
 - Decision theory: no use
 - Game theory: new iterated strict dominance $\rightarrow (D,R)$

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-1,3</td>
<td>2,1</td>
</tr>
<tr>
<td>D</td>
<td>0,2</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Prisoner’s dilemma & Iterated dominance

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1,1</td>
<td>-1,2</td>
</tr>
<tr>
<td>D</td>
<td>2,-1</td>
<td>0,0</td>
</tr>
</tbody>
</table>

- Iterated strict dominance $\rightarrow (D,D)$
Vickrey Auction & Iterated dominance

- **Good’s valuations:** v_i; Assume common knowledge for the moment
- **Bids:** s_i

Second price:
- winning condition: $s_i > \max_{j \neq i} s_j$
- let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
- winner i’s utility: $u_i = v_i - r_i$; other players utility = 0

for each player bidding true valuation is weakly dominant:
- case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: loses $\Rightarrow u_i = 0$
 \Rightarrow could have bidden v_i as well
 - If $r_i \leq v_i$: wins $\Rightarrow u_i = v_i - r_i$
 \Rightarrow could have bidden v_i as well

Games in Strategic Form & Nash Equilibrium

- **Good’s valuations:** v_i; Assume common knowledge for the moment
- **Bids:** s_i

Second price:
- winning condition: $s_i > \max_{j \neq i} s_j$
- let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
- winner i’s utility: $u_i = v_i - r_i$; other players utility = 0

for each player bidding true valuation is weakly dominant:
- case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: loses $\Rightarrow u_i = 0$
 \Rightarrow could have bidden v_i as well
 - If $r_i \leq v_i$: wins $\Rightarrow u_i = v_i - r_i$
 \Rightarrow could have bidden v_i as well
Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- Good's valuations: v_i; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i's utility: $u_i = v_i - r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: loses $\Rightarrow u_i = 0$
 \Rightarrow could have bid v_i as well
 - If $r_i \leq v_i$: wins $\Rightarrow u_i = v_i - r_i$
 \Rightarrow could have bid v_i as well
- Assumption of common knowledge may be dropped because bidding own valuation is weakly dominant for each player

Vickrey Auction & Iterated dominance

- Good's valuations: v_i; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i's utility: $u_i = v_i - r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: loses $\Rightarrow u_i = 0$
 \Rightarrow could have bid v_i as well
 - If $r_i \leq v_i$: wins $\Rightarrow u_i = v_i - r_i$
 \Rightarrow could have bid v_i as well

Vickrey Auction & Iterated dominance

- Good's valuations: v_i; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i's utility: $u_i = v_i - r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: loses $\Rightarrow u_i = 0$
 \Rightarrow could have bid v_i as well
 - If $r_i \leq v_i$: wins $\Rightarrow u_i = v_i - r_i$
 \Rightarrow could have bid v_i as well

Vickrey Auction & Iterated dominance

- Good's valuations: v_i; Assume common knowledge for the moment
- Bids: s_i
- Second price:
 - winning condition: $s_i > \max_{j \neq i} s_j$
 - let $r_i := \max_{j \neq i} s_j$; r_i is the price having to be paid
 - winner i's utility: $u_i = v_i - r_i$; other players utility = 0
- for each player bidding true valuation is weakly dominant:
 - case $s_i > v_i$: (overbidding)
 - If $r_i > s_i$: loses $\Rightarrow u_i = 0$
 \Rightarrow could have bid v_i as well
 - If $r_i \leq v_i$: wins $\Rightarrow u_i = v_i - r_i$
 \Rightarrow could have bid v_i as well
- Assumption of common knowledge may be dropped because bidding own valuation is weakly dominant for each player
Games in Strategic Form & Nash Equilibrium

Vickrey Auction & Iterated dominance

- case $v_i < r_1 < s_i$
 - i wins $\Rightarrow u_i = v_i - r_1 < 0$ (winner’s curse)
 - should have bid $v_i = r_1 \Rightarrow u_i = 0$ at least

- case $s_i < v_i$ (underbidding)
 - If $r_1 \leq s_i$ or $r_1 \geq v_i$:
 - u_i is unchanged if he bids v_i instead of s_i
 - If $s_i < r_1 < v_i$:
 - bidder forgoes positive winning chances by underbidding

- Assumption of common knowledge my be dropped because bidding own valuation is weakly dominant for each player

Vickrey Auction & Iterated dominance

- case $v_i < r_1 < s_i$
 - i wins $\Rightarrow u_i = v_i - r_1 < 0$ (winner’s curse)
 - should have bid $v_i = r_1 \Rightarrow u_i = 0$ at least

- case $s_i < v_i$ (underbidding)
 - If $r_1 \leq s_i$ or $r_1 \geq v_i$:
 - u_i is unchanged if he bids v_i instead of s_i
 - If $s_i < r_1 < v_i$:
 - bidder forgoes positive winning chances by underbidding

- Assumption of common knowledge my be dropped because bidding own valuation is weakly dominant for each player

Nash Equilibrium

- **Nash Equilibrium**: strategy profile: each player’s strategy is optimal response to all other player’s strategies:

- Mixed strategy profile \(\sigma^* \) is Nash Equilibrium if for all \(i \): \(u_i(\sigma^*_{-i}, \sigma^*_{+i}) \geq u_i(s_i, \sigma^*_{-i}) \) for all \(s_i \in S_i \).

 (Pure strategy profiles also possible \(\rightarrow \) “pure strategy NE”)

- Strategy profile \(s^* \) is **Strict Nash Equilibrium**: if it is a NE and for all \(i \): \(u_i(s^*_{-i}, s^*_{+i}) > u_i(s_i, s^*_{+i}) \) for all \(s_i \neq s^*_i \).

 Strict NE is necessarily a pure strategy NE by definition.
Nash Equilibrium

- From previous slide: \(\sigma^* \) is Nash Equilibrium if for all \(i \): \(u_i(\sigma^*_i, \sigma^*_{-i}) \geq u_i(\sigma_i, \sigma^*_{-i}) \) for all \(\sigma_i \in S_i \)
- Expected utilities are "linear in the probabilities"
 - In NE def we must only check for pure alternatives \(\sigma_i \)
 - In a (non-degenerate) mixed strategy Nash Equilibrium a player must be (a priori) indifferent between all pure strategies to which he assigns positive probability (Indifference condition)
 (we will analyze this in more depth later)

Indifference condition: more detailed explanation:

For player \(i \)'s utility, we have:

\[
u_i(\sigma) = \sum_{s_i \in S_u} \sigma_i(s_i) u_i(s_i, \sigma_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i(s_i) = 1
\]

for the NE \(\sigma^* \) we thus have:

\[
u_i(\sigma^*) = \sum_{s_i \in S_u} \sigma_i^*(s_i) u_i(s_i, \sigma_{-i}^*) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i^*(s_i) = 1
\]

since \(u_i(\sigma^*) \) is the best outcome \(i \) can achieve, when the others play \(\sigma_{-i}^* \), all the \(u_i(s_i, \sigma_{-i}^*) \) with \(\sigma_i(s_i) > 0 \) must be equal, and equal to \(u_i(\sigma^*) \).

why? \(\rightarrow \) no \(u_i(s_i, \sigma_{-i}^*) \) can be greater than \(u_i(\sigma^*) \) otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.
Inference condition: more detailed explanation:

For player i’s utility, we have:

$$u_i(\sigma) = \sum_{s_i \in S_i} \sigma_i(s_i)u_i(s_i, s_{-i}) \quad \text{with} \quad \sum_{s_i \in S_i} \sigma_i(s_i) = 1$$

for the NE σ^* we thus have:

$$u_i(\sigma^*) = \sum_{s_i \in S_i} \sigma^*_i(s_i)u_i(s_i, \sigma^*_{-i}) \quad \text{with} \quad \sum_{s_i \in S_i} \sigma^*_i(s_i) = 1$$

since $u_i(\sigma^*)$ is the best outcome i can achieve, when the others play σ^*_{-i}, all the $u_i(s_i, \sigma^*_{-i})$ with $\sigma_i(s_i) > 0$ must be equal, and equal to $u_i(\sigma^*)$.

why? no $u_i(s_i, \sigma^*_{-i})$ can be greater than $u_i(\sigma^*)$ otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.

Notation: Strategic Form Games

- Space of mixed strategies for player i: Σ_i
- Space of mixed strategy profiles: $\Sigma = \times_i \Sigma_i$
- Mixed strategy profile $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_t) \in \Sigma$
- Player i’s payoff when a mixed strategy profile σ is played is
 $$\sum_{s \in \Sigma} \left(\prod_{j=1}^{t} \sigma_j(s_j) \right) u_i(s)$$
 denoted as $u_i(\sigma)$, is a linear function of the σ_i
- A pure strategy of a player is a special mixed strategy of that player with one probability equal to 1 and all others equal to 0

Games in Strategic Form & Nash Equilibrium

Nash Equilibrium

- Nash Equilibrium: strategy profile: each player’s strategy is optimal response to all other player’s strategies:
 - Mixed strategy profile σ^* is Nash Equilibrium if

 for all i: $u_i(\sigma^*_i, \sigma^*_{-i}) \geq u_i(s_i, \sigma^*_{-i})$ for all $s_i \in S_i$
 (Pure strategy profiles also possible → "pure strategy NE")
- Strategy profile s^* is Strict Nash Equilibrium: if it is a NE and for all i: $u_i(s^*_i, s^*_{-i}) > u_i(s_i, s^*_{-i})$ for all $s_i \neq s^*_i$.
 Strict NE is necessarily a pure strategy NE by definition.

Games in Strategic Form & Nash Equilibrium

- What is rational to do?
 - No matter what player 1 does, R gives player 2 a strictly higher payoff than M.
 - "M is strictly dominated by $R"$
 - \rightarrow player 1 knows that player 2 will not play $M \rightarrow U$ is better than M or D
 - \rightarrow player 2 knows that player 1 knows that player 2 will not play $M \rightarrow$ player 2 knows that player 1 will play $U \rightarrow$ player 2 will play L
 - This elimination process: "iterated strict dominance"
 - Is outcome dependent on elimination order?
 - No! If s_i is strictly worse than s'_i against opponent’s strategy in set D then s_i is strictly worse than s'_i against opponent’s strategy in any subset of $D"
Inference condition: more detailed explanation:

For player i’s utility, we have:

\[u_i(\sigma) = \sum_{s_i \in S_u} \sigma_i(s_i) u_i(s_i, \sigma_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i(s_i) = 1 \]

for the NE \(\sigma^* \) we thus have:

\[u_i(\sigma^*) = \sum_{s_i \in S_u} \sigma_i^*(s_i) u_i(s_i, \sigma^*_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i^*(s_i) = 1 \]

since \(u_i(\sigma^*) \) is the best outcome, i can achieve, when the others play \(\sigma^*_{-i} \), all the \(u_i(s_i, \sigma^*_{-i}) \) with \(\sigma_i(s_i) > 0 \) must be equal, and equal to \(u_i(\sigma^*) \).

why? \(\rightarrow \) no \(u_i(s_i, \sigma^*_{-i}) \) can be greater than \(u_i(\sigma^*) \) otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.

Inference condition: more detailed explanation:

For player i’s utility, we have:

\[u_i(\sigma) = \sum_{s_i \in S_u} \sigma_i(s_i) u_i(s_i, \sigma_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i(s_i) = 1 \]

for the NE \(\sigma^* \) we thus have:

\[u_i(\sigma^*) = \sum_{s_i \in S_u} \sigma_i^*(s_i) u_i(s_i, \sigma^*_{-i}) \quad \text{with} \quad \sum_{s_i \in S_u} \sigma_i^*(s_i) = 1 \]

since \(u_i(\sigma^*) \) is the best outcome, i can achieve, when the others play \(\sigma^*_{-i} \), all the \(u_i(s_i, \sigma^*_{-i}) \) with \(\sigma_i(s_i) > 0 \) must be equal, and equal to \(u_i(\sigma^*) \).

why? \(\rightarrow \) no \(u_i(s_i, \sigma^*_{-i}) \) can be greater than \(u_i(\sigma^*) \) otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.
For player i's utility, we have:

$$u_i(\sigma) = \sum_{s_i \in S_u} \sigma_i(s_i)u_i(s_i, \sigma_{-i})$$

with $\sum_{s_i \in S_u} \sigma_i(s_i) = 1$

for the NE σ^* we thus have:

$$u_i(\sigma^*) = \sum_{s_i \in S_u} \sigma^*_i(s_i)u_i(s_i, \sigma^*_{-i})$$

with $\sum_{s_i \in S_u} \sigma^*_i(s_i) = 1$

since $u_i(\sigma^*)$ is the best outcome i can achieve, when the others play σ^*_{-i}, all the $u_i(s_i, \sigma^*_{-i})$ with $\sigma_i(s_i) > 0$ must be equal, and equal to $u_i(\sigma^*)$.

why? \Rightarrow no $u_i(s_i, \sigma^*_{-i})$ can be greater than $u_i(\sigma^*)$ otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.

Nash Equilibrium

- Strict equilibria need not exist. However each finite strategy form game has a mixed strategy equilibrium.
- In NE no player has incentive to deviate from NE
- In reality: If rationality is „non-strict“ (mistakes are made): deviations can occur
- If one round of elimination of strictly dominated strategies yields unique strategy profile, this strategy profile is a strict NE (unique)
- In NE, positive probabilities may only be assigned to not-strictly dominated strategies (Otherwise profit may be increased by choosing a dominating strategy).
Nash Equilibrium: Example: Cournot Competition

- **Cournot model: Duopoly.** Each of two firms (players) produces same good.
- Output levels \(q_i \) are chosen from sets \(Q_i \)
- Cost of production is \(c_i(q_i) \)
- Market price is \(p(q) = p(q_1 + q_2) \)
- Firm i’s profit is then \(u_i(q_1, q_2) = q_i p(q) - c_i(q_i) \)
- Cournot reaction functions \(r_1 : Q_2 \rightarrow Q_1 \) and \(r_2 : Q_1 \rightarrow Q_2 \) specify optimal reaction on output level of opponent

Under certain reasonable assumptions (see [1]) we can maximize e.g. \(u_2(q_1, q_1) \) by solving \(d/dq_2 \ u_2(q_1, q_2) = 0 \) which yields

\[
\frac{d}{dq_2} \ [q_2 \ p(q_1, q_2) - c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) \ q_2 - c_2'(q_2) = 0.
\]

Inserting \(r_2(q_1) \) for \(q_2 \)

\[
p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) \ r_2(q_1) - c_2'(r_2(q_1)) = 0
\]

gives the defining equation for \(r_2(.) \).

(analogous for \(r_1(.) \)).

The intersections of the functions \(r_2 \) and \(r_1 \) are the NE of the Cournot game.

Example: Linear demand \(p(q) = \max(0, 1-q) \); linear cost: \(c_i(q_i) = q_i \)

\[
\rightarrow r_2(q_1) = 1/2 \ (1 - q_1 - c);
\]

\[
r_1(q_2) = 1/2 \ (1 - q_2 - c);
\]

\[
\rightarrow \text{NE: } q^*_1 = r_1(q^*_2) = 1/3 \ (1 - c) = q^*_1 = r_1(q^*_2)
\]
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. \(u_2(q_1, q_2) \) by solving \(d/dq_2 \ u_2(q_1, q_2) = 0 \) which yields
\[
d/dq_2 \ [q_2 \ p(q_1, q_2) - c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) \ q_2 - c_2'(q_2) = 0.
\]
Inserting \(r_2(q_1) \) for \(q_2 \)
\[
p(q_1, r_2(q_1)) + p'(q_1, r_2(q_1)) \ r_2(q_1) - c_2'(r_2(q_1)) = 0
\]
gives the defining equation for \(r_2(.) \)
(analogous for \(r_1(.) \)).

- The intersections of the functions \(r_2 \) and \(r_1 \) are the NE of the Cournot game.

- Example: Linear demand \(p(q) = \max(0, 1-q) \); linear cost: \(c_i(q_i) = c \ q_i \):

\[
\rightarrow r_2(q_1) = 1/2 (1- q_1 - c) ; \ r_1(q_2) = 1/2 (1- q_2 - c);
\]
\[
\rightarrow \text{NE: } q^*_2 = r_2(q^*_1) = 1/3 (1-c) = q^*_1 = r_1(q^*_1)
\]
Nash Equilibrium: Example: Cournot Competition

- Under certain reasonable assumptions (see [1]) we can maximize e.g. \(u_2(q_1, q_2) \) by solving \(d/dq_2 \ u_2(q_1, q_2) = 0 \) which yields

\[
d/dq_2 \ [q_2 \ p(q_1, q_2) - c_2(q_2)] = p(q_1, q_2) + p'(q_1, q_2) \ q_2 - c_2'(q_2) = 0.
\]

Inserting \(r_2(q_1) \) for \(q_2 \)

\[
p(q_1 + r_2(q_1)) + p'(q_1 + r_2(q_1)) \ r_2(q_1) - c_2'(r_2(q_1)) = 0
\]
gives the defining equation for \(r_2(.) \) .

(analogous for \(r_1(.) \)).

- The intersections of the functions \(r_2 \) and \(r_1 \) are the NE of the Cournot game.

Example: Linear demand \(p(q) = \max(0, 1-q) \); linear cost: \(c_i(q_i) = c \ q_i \):

\[r_2(q_1) = 1/2 (1 - q_1 - c) \]
\[r_1(q_2) = 1/2 (1 - q_2 - c) \]

\(\implies \) NE: \(q^*_2 = r_2(q^*_1) = 1/3 (1-c) = q^*_1 = r_1(q^*_1) \)
Nash Equilibrium: Example: Hotelling Competition

- Two firms, 1 (at x=0) and 2 (at x=1) sell same good
- Unit cost of product := c; price for product of firm i := p_i
- Customers: uniformly distributed over [0,1] with probability density 1
- Customer transportation cost: t per length unit
- Customers: have unit demand; buy good if price + transportation_cost < max_price = S, buy good from overall cheaper firm

\[
D_1(p_1, p_2) = (p_2 - p_1 + t) / (2t)
\]

\[
D_2(p_2, r_2) = 1 - D_1(p_1, p_2)
\]

Nash Equilibrium \((p_1^*, p_2^*) \): For each i: \(p_i^* \in \text{argmax} \{ (p_i - c) D_i(p_i, p_i^*) \} \)

Denoting the reaction functions by \(r_i(p_i) \) and \(r_2(p_1) \) we get for e.g. firm 2:

\[
\frac{d}{dp_2} \{ (p_2 - c) D_2(p_2, p_2) \} = 0 \quad \text{and afterwards insert} \quad r_2(p_1) \quad \text{for} \quad p_2 \rightarrow
\]

\[
D_2(p_2, r_2(p_2)) + (r_2(p_1) - c) \frac{d}{dp_2} D_2(p_2, r_2(p_1)) = 0
\]

\[
p_1^* = p_2^* = c + t \quad \text{for} \quad c + 3/2 t \leq S
\]
Nash Equilibrium: Example: Hotelling Competition

- Demand for firm 1 is \(D_1(p_1, p_2) = x \) where \(p_1 + tx = p_2 + t(1-x) \)
- \(\rightarrow D_1(p_1, p_2) = (p_2 - p_1 + t) / (2t) \)
- \(D_1(p_1, p_2) = 1 - D_2(p_1, p_2) \)
- Nash Equilibrium \((p^*_1, p^*_2) \): For each \(i \): \(p^*_i \in \text{argmax} \{(p_i - c) D_i(p_i, p^*_i)\} \)
- Denoting the reaction functions by \(r_i(p_2) \) and \(r_j(p_1) \) we get for e.g. firm 2:
 \[\frac{d}{dp_2} \left\{ (p_2 - c) D_2(p^*_1, p_2) \right\} = 0 \quad + \quad \text{afterwards insert } r_2(p_1) \text{ for } p_2 \]
 \[D_2(p_2, r_2(p_1)) + (r_2(p_1) - c) \frac{\partial}{\partial p_2} D_2(p_2, r_2(p_1)) = 0 \quad \rightarrow \]
 \[p^*_1 = p^*_2 = c + t \quad \text{for } c + 3/2 t \leq s \]
Nash Equilibrium: Example: Hotelling Competition

- Two firms, 1 (at x=0) and 2 (at x=1) sell same good
- Unit cost of product := c; price for product of firm i := p_i
- Customers: uniformly distributed over [0,1] with probability density 1
- Customer transportation cost: t per length unit
- Customers: have unit demand;
 - buy good if price + transportation_cost < max_price = \frac{c}{2} ;
 - buy good from overall cheaper firm

Nash Equilibrium: Non-Existence-of Pure NE-Example

- Some games may have more than one pure strategy NE
- Not all games have a pure strategy NE:
 - Example: Matching pennies:
 - Both players simultaneously announce
 - Head or Tails: IF match \rightarrow 1 wins; If differ \rightarrow 2 wins
 - No pure NE;
 - mixed strategy NE: \left(\frac{1}{2}, \frac{1}{2}\right)
 - Reasoning: If player 2 plays \left(\frac{1}{2}, \frac{1}{2}\right) then player 1’s expected payoff is \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (-1) = 0 when playing H and \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0 when playing T \rightarrow player 1 is also indifferent

Nash Equilibrium: Non-Existence-of Pure NE-Example

- Some games may have more than one pure strategy NE
- Not all games have a pure strategy NE:
 - Example: Matching pennies:
 - Both players simultaneously announce
 - Head or Tails: IF match \rightarrow 1 wins; If differ \rightarrow 2 wins
 - No pure NE;
 - mixed strategy NE: \left(\frac{1}{2}, \frac{1}{2}\right)
 - Reasoning: If player 2 plays \left(\frac{1}{2}, \frac{1}{2}\right) then player 1’s expected payoff is \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (-1) = 0 when playing H and \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0 when playing T \rightarrow player 1 is also indifferent
Nash Equilibrium: Non-Existence of Pure NE-Example

- Some games may have more than one pure strategy NE
- Not all games have a pure strategy NE:
- Example: Matching pennies:
 - Both players simultaneously announce
 - Head or Tails: If match → 1 wins; If differ → 2 wins
 - No pure NE; but mixed strategy NE: \((1/2, 1/2); (1/2, 1/2) \):
 - Reasoning: If player 2 plays \((1/2, 1/2) \) then player 1's expected payoff is \(1/2 \times 1 + 1/2 \times (-1) = 0 \) when playing H and \(1/2 \times 1 + 1/2 \times (-1) = 0 \) when playing T → player 1 is also indifferent

Nash Equilibrium: Non-Existence of Pure NE-Example 2

- Another example: Inspection game
- Worker: work or shirk; Employer: Inspect or not inspect
 - Worker: working costs \(g \), produces value \(v \); gets wage \(w \)
 - Employer: Inspection costs \(h \)
 - We assume \(w > g > h > 0 \)
 - If not inspect → worker shirks → better inspect → if inspect → worker always works → better not inspect → …: No pure NE
 - Employer must randomize
Nash Equilibrium: Non-Existence—of Pure NE—Example 2

Another example: Inspection game

Worker: work or shirk; Employer: Inspect or not inspect

Worker: working costs g, produces value v; gets wage w

Employer: Inspection costs h

We assume $w > g > h > 0$

If not inspect \rightarrow worker shirks \rightarrow better inspect \rightarrow if inspect \rightarrow worker always works \rightarrow better not inspect \rightarrow ...: No pure NE

Employer must randomize
Games in Strategic Form & Nash Equilibrium

Nash Equilibrium: Example: Hotelling Competition

- Demand for firm 1 is \(D_1(p_1, p_2) = x \) where \(p_1 + tx = p_2 + (1-x) \)
- \(D_2(p_1, p_2) = (p_2 - p_1 + t) / (2t) \)
- \(D_1(p_1, p_2) = 1 - D_2(p_1, p_2) \)
- Nash Equilibrium \((p^\ast_1, p^\ast_2)\): For each \(i: p^\ast_i \in \argmax \{(p_i - c) D_i(p_i, p^\ast_{-i})\}\)
- Denoting the reaction functions by \(r_i(p_2) \) and \(r_j(p_1) \) we get for e.g. firm 2:
 \[
 \frac{d}{dp_2} \{(p_2 - c) D_2(p^\ast_1, p_2)\} = 0
 \]
 + afterwards insert \(r_2(p_1) \) for \(p_2 \)
 \[
 D_2(p_2, r_2(p_1)) + (r_2(p_1) - c) \frac{d}{dp_2} D_2(p_2, r_2(p_1)) = 0
 \]
 \[
 p^\ast_1 = p^\ast_2 = c + t \quad \text{for} \quad c + 3/2 \cdot t \leq s
 \]

Indifference condition: more detailed explanation:

For player \(i\)’s utility, we have:

\[
 u_i(\sigma) = \sum_{s_i \in S_i} \sigma_i(s_i) u_i(s_i, \sigma_{-i}) \quad \text{with} \quad \sum_{s_i \in S_i} \sigma_i(s_i) = 1
\]

for the NE \(\sigma^*\) we thus have:

\[
 u_i(\sigma^*) = \sum_{s_i \in S_i} \sigma^*_i(s_i) u_i(s_i, \sigma^*_{-i}) \quad \text{with} \quad \sum_{s_i \in S_i} \sigma^*_i(s_i) = 1
\]

since \(u_i(\sigma^*) \) is the best outcome \(i\) can achieve, when the others play \(\sigma^*_{-i}\), all the \(u_i(s_i, \sigma^*_{-i}) \) with \(\sigma_i(s_i) > 0 \) must be equal, and equal to \(u_i(\sigma^*) \).

why? \(\rightarrow\) no \(u_i(s_i, \sigma^*_{-i}) \) can be greater than \(u_i(\sigma^*) \) otherwise the NE condition would be violated, and also not smaller, because then the sum would also be smaller.

Nash Equilibrium: Non-Existence--of Pure NE--Example 2

- If worker plays \((x, 1-x)\) and employer plays \((y, 1-y)\)
- Indifference condition in mixed strategy NE \(\rightarrow\)
 - \(\rightarrow\) For worker indifferent between S and W:
 - gain from shirking == expected income loss:
 \[
 0y + (1-y)w = y(w-g) + (1-y)(w-g)
 \]
 - \(g = yw \) \(\rightarrow\) \(y = g/w \)
 - \(\rightarrow\) For employer indifferent between L and NL:
 - inspection costs == expected wage savings:
 \[
 x(-h) + (1-x)(v-w-h) = x(-w) + (1-x)(v-w)
 \]
 - \(h = xw \) \(\rightarrow\) \(x = h/w \)
Nash Equilibrium: Non-Existence—of Pure NE: Example 2

- If worker plays \((x, 1-x)\) and employer plays \((y, 1-y)\)
- Indifference condition in mixed strategy NE →
 - \(\rightarrow\) For worker indifferent between \(S\) and \(W\):
gain from shirking = expected income loss:
 \[0y+(1-y)w = y(w-g)+(1-y)(w-g)\]
 \(\rightarrow g = yw \rightarrow y = g/w\)
 - \(\rightarrow\) For employer indifferent between \(I\) and \(NI\):
inspection costs = expected wage savings:
 \[x(-h)+(1-x)(v-w-h) = x(-w) + (1-x)(v-w)\]
 \(\rightarrow h = xw \rightarrow x = h/w\)

Nash Equilibrium: More than one NE

- Another example: Battle of the sexes
 - Man & Woman; Ballet or Football

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0, 0</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- Another example: Game of chicken
 - Driver 1 & Driver 2; Tough or Weak

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-1, -1</td>
<td>2, 1</td>
</tr>
<tr>
<td>W</td>
<td>1, 2</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Nash Equilibrium: More than one NE

Another example: Battle of the sexes
- Two pure NE: (F,F) and (B,B)
- One mixed NE: Indifference condition
 → Let $\sigma_1(F) = x$ and $\sigma_1(B) = y$
 Player 1's indifference:
 $0 \times x + 2(1-x) = 1 \times y + 0(1-y) \Rightarrow y = \frac{2}{3}$
 Player 2's indifference:
 $0 \times x + 2(1-x) = 1 \times 0 + 0(1-x) \Rightarrow x = \frac{2}{3}$
 → Mixed NE: $(\frac{2}{3}, \frac{1}{3}); (\frac{2}{3}, \frac{1}{3})$

Another example: Game of chicken
- (same reasoning)
 Mixed NE: $(\frac{1}{2}, 1, 2; \frac{1}{2}, 1, 2)$

<table>
<thead>
<tr>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0, 0</td>
</tr>
<tr>
<td></td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>0, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-1, -1</td>
</tr>
<tr>
<td></td>
<td>2, 1</td>
</tr>
<tr>
<td>W</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE → which will be chosen?
- Theory of "focalness" of NE ("focal points"): Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

<table>
<thead>
<tr>
<th>Hunt</th>
<th>Stag (C)</th>
<th>Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stag (C)</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Hare (D)</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Hunt

Stag Hunt: NE: (C,C) and (D,D); (C,C) is pareto-dominant → (C,C) might be chosen if p(C)>0.5 BUT more than two players: ALL have to agree on C → p(C)<0.5 → p(C)>0.93 → (D,D) "risk dominates" (C,C)
Nash Equilibrium: More than one NE

Focal points

- Some games have more than one NE \(\rightarrow\) which will be chosen?
- Theory of „focalness“ of NE („focal points“): Example: Chose time of day simultaneously; reward if match: 12 noon is focal, 15:37 is not

Risk Dominance

- Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto-dominant \(\rightarrow\) (C;C) might be chosen if \(p(C)>0.5\)
 BUT
- more than two players: ALL have to agree on C \(\rightarrow p(C)^n>0.5 \rightarrow p(C)>0.93 \rightarrow (D;D)\) „risk dominates“ (C;C)

<table>
<thead>
<tr>
<th></th>
<th>Hunt Stag (C)</th>
<th>Hunt Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Stag</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hunt Stag (C)</th>
<th>Hunt Hare (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt</td>
<td>2, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>Stag</td>
<td>1, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>