Ad (2):

We only consider the assertion for monotonic \(f_i \).

Let \(D_0 \) denote the least solution. We show:

- \(D_0[x_i] \supseteq D[x_i] \) (all the time)
- \(D[x_i] \not\supseteq f_i \text{eval} \implies x_i \in W \) (at exit of the loop body)
- On termination, the algo returns a solution

Proof

Ad (1):

Every unknown \(x_i \) may change its value at most \(h \) times.

Each time, the list \(I[x_i] \) is added to \(W \).

Thus, the total number of evaluations is:

\[
\begin{align*}
\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_i])) \\
= n + h \cdot \sum_{i=1}^{n} \# (I[x_i]) \\
= n + h \cdot \sum_{i=1}^{n} \# (\text{Dep } f_i) \\
\leq h \cdot \sum_{i=1}^{n} (1 + \# (\text{Dep } f_i)) \\
= h \cdot N
\end{align*}
\]

Discussion

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration.
- The algo also works for non-monotonic \(f_i \).
- For monotonic \(f_i \), the algo can be simplified:

\[
D[x_i] = D[x_i] \cup t_i \implies :\n\]

- In presence of widening, we replace:

\[
D[x_i] = D[x_i] \cup t_i \implies D[x_i] = D[x_i] \uplus t_i
\]

- In presence of Narrowing, we replace:

\[
D[x_i] = D[x_i] \cup t_i \implies D[x_i] = D[x_i] \downarrow t_i
\]

... and update the test to \(t \sqsubseteq D[x_i] \).
The Algorithm

\[W = [x_1, \ldots, x_n]; \]
while \((W \neq [])\) \{
\[x_i = \text{extract } W; \]
\[t = f_i \text{ eval}; \]
if \((t \not\subseteq D[x_i])\) \{
\[D[x_i] = D[x_i] \cup t; \]
\[W = \text{append } l[x_i] \ W; \]
\}
\}
where: \(\text{eval } x_j = D[x_j] \)

Discussion

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration.
- The algo also works for non-monotonic \(f_i \).
- For monotonic \(f_i \), the algo can be simplified:
\[
D[x_i] = D[x_i] \cup t; \quad \implies \quad ;
\]
- In presence of widening, we replace:
\[
D[x_i] = D[x_i] \cup t; \quad \implies \quad D[x_i] = D[x_i] \uplus t;
\]
- In presence of Narrowing, we replace:
\[
D[x_i] = D[x_i] \cap t; \quad \implies \quad D[x_i] = D[x_i] \cap t;
\]
... and update the test to \(t \sqsubseteq D[x_i] \).

The Algorithm

\[W = [x_1, \ldots, x_n]; \]
while \((W \neq [])\) \{
\[x_i = \text{extract } W; \]
\[t = f_i \text{ eval}; \]
if \((t \not\subseteq D[x_i])\) \{
\[D[x_i] = D[x_i] \cup t; \]
\[W = \text{append } l[x_i] \ W; \]
\}
\}
where: \(\text{eval } x_j = D[x_j] \)

Discussion

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration.
- The algo also works for non-monotonic \(f_i \).
- For monotonic \(f_i \), the algo can be simplified:
\[
D[x_i] = D[x_i] \cup t; \quad \implies \quad ;
\]
- In presence of widening, we replace:
\[
D[x_i] = D[x_i] \cup t; \quad \implies \quad D[x_i] = D[x_i] \uplus t;
\]
- In presence of Narrowing, we replace:
\[
D[x_i] = D[x_i] \cap t; \quad \implies \quad D[x_i] = D[x_i] \cap t;
\]
... and update the test to \(t \sqsubseteq D[x_i] \).
Caveat

- The algorithm relies on explicit dependencies among the unknowns.
 So far in our applications, these were obvious. This need not always be the case!
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ...
 \[\implies \text{recursive evaluation} \ldots \]

Idea

- If during evaluation of \(f_i \), an unknown \(x_j \) is accessed, \(x_j \) is first solved recursively. Then \(x_i \) is added to \(I[x_j] \).
 \[\text{eval } x_j = \text{solve } x_j; \]
 \[I[x_j] = I[x_j] \cup \{ x_i \}; \]
 \[D[x_j]; \]
- In order to prevent recursion to descend infinitely, a set \(\text{Stable} \) of unknown is maintained for which \(\text{solve} \) just looks up their values.
 Initially, \(\text{Stable} = \emptyset \ldots \)

The Algorithm

\[
W = \{ x_1, \ldots, x_n \};
\]
while \((W \neq \emptyset) \) {
 \[x_i = \text{extract } W; \]
 \[t = (f_i \text{ eval}); \]
 if \((t \not\in D[x_i]) \) {
 \[D[x_i] = D[x_i] \cup t; \]
 \[W = \text{append } I[x_i] W; \]
 }
}
where: \(\text{eval } x_j = D[x_j] \)
Idea

→ If during evaluation of f_i, an unknown x_j is accessed, x_j is first solved recursively. Then x_i is added to $I[x_j]$.

\[
\begin{align*}
\text{eval } x_i & \quad \text{solve } x_j; \\
I[x_i] & = I[x_j] \cup \{x_i\}; \\
D[x_i] & = D[x_j];
\end{align*}
\]

→ In order to prevent recursion to descend infinitely, a set Stable of unknown is maintained for which solve just looks up their values.
Initially, $\text{Stable} = \emptyset$...

The Function solve

\[
\begin{align*}
solve x_i & = \begin{cases} x_i & \text{if } (x_i \notin \text{Stable}) \\
\text{app solve } \{x_i\}; \\
\text{if } (t \notin D[x_i]) \\
D[x_i] & = D[x_i] \cup t; \\
W & = I[x_i]; \\
\text{Stable} & = \text{Stable} \setminus W; \\
\text{app solve } W;
\end{cases}
\end{align*}
\]

Example

Consider our standard example:

\[
\begin{align*}
x_1 & \supset \{a\} \cup x_3 \\
x_2 & \supset x_3 \cap \{a, b\} \\
x_3 & \supset x_1 \cup \{c\}
\end{align*}
\]

A trace of the fixpoint algorithm then looks as follows:
Example

\[
x_1 \supseteq \{a\} \cup x_3
\]
\[
x_2 \supseteq x_3 \cap \{a, b\}
\]
\[
x_3 \supseteq x_1 \cup \{c\}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
D[x_1] & D[x_2] & D[x_3] & W \\
\hline
\emptyset & \emptyset & \emptyset & x_1, x_2, x_3 \\
\{a\} & \emptyset & \emptyset & x_2, x_3 \\
\{a\} & \emptyset & \emptyset & x_3 \\
\{a\} & \emptyset & \emptyset & \emptyset \\
\{a, c\} & \emptyset & \emptyset & x_2 \\
\{a, c\} & \emptyset & \emptyset & x_3 \\
\{a, c\} & \emptyset & \emptyset & x_1 \\
\{a, c\} & \{a\} & \{a, c\} & \emptyset \\
\hline
\end{array}
\]

\[
I
\]

\[
\begin{array}{|c|c|c|}
\hline
x_1 & x_2 & x_3 \\
\hline
\{x_3\} & \emptyset & \{x_1, x_2\} \\
\{x_3\} & \emptyset & \emptyset \\
\{x_3\} & \emptyset & \{x_1, x_2\} \\
\{x_3\} & \emptyset & \emptyset \\
\hline
\end{array}
\]

→ Evaluation starts with an interesting unknown \(x_i\) (e.g., the value at \textbf{stop}.)
→ Then automatically all unknowns are evaluated which influence \(x_i\).
→ The number of evaluations is often smaller than during worklist iteration.
→ The algorithm is more complex but does not rely on pre-computation of variable dependencies.
→ It also works if variable dependencies during iteration change !!!

\[\implies\] interprocedural analysis

Caveat II

- The recursive algorithm may not evaluate right-hand sides atomically.
- Evaluations of right-hand sides may be continued which have been started with out-dated data. \[\implies\] in some cases, it may fail to determine the \textbf{least} solution !?!

Idea

- Identify outdated computations …
- Abort !!!
1.7 Eliminating Partial Redundancies

Example

\[x = M[a], \quad y_1 = x + 1; \]

\[w = x + 1; \]

\[M[x] = y_1 + y_2; \]

// \(x + 1 \) is evaluated on every path ...
// on one path, however, even twice.

Idea

1. Insert assignments \(T_a = e \) such that \(e \) is available at all points where the value of \(e \) is required.
2. Thereby spare program points where \(e \) either is already available or will definitely be computed in future.

Expressions with the latter property are called very busy.

3. Replace the original evaluations of \(e \) by accesses to the variable \(T_a \).

\[\rightarrow \quad \text{we require a novel analysis ...} \]
Goal

\[x = M[a]; \]
\[y_1 = x + 1; \]
\[x = M[a]; \]
\[T = x + 1; \]
\[y_1 = T; \]
\[M[x] = y_1 + y_2; \]
\[M[x] = y_1 + T; \]

Idea

(1) Insert assignments \(T_e = e \); such that \(e \) is available at all points where the value of \(e \) is required.
(2) Thereby spare program points where \(e \) either is already available or will definitely be computed in future. Expressions with the latter property are called very busy.
(3) Replace the original evaluations of \(e \) by accesses to the variable \(T_e \).

\[\Rightarrow \text{ we require a novel analysis ...} \]

Idea

An expression \(e \) is called busy along a path \(\pi \), if the expression \(e \) is evaluated before any of the variables \(x \in \text{Vars}(e) \) is overwritten.

\[// \text{ backward analysis!} \]

\(e \) is called very busy at \(u \), if \(e \) is busy along every path \(\pi : u \rightarrow \text{stop} \).
An expression \(e \) is called **busy** along a path \(\pi \), if the expression \(e \) is evaluated before any of the variables \(x \in \text{Vars}(e) \) is overwritten.

// backward analysis!

\[e \] is called **very busy** at \(u \), if \(e \) is busy along every path \(\pi : u \to^* \text{stop} \).

Accordingly, we require:

\[B[u] = \bigcap\{\beta \mid \beta : u \to^* \text{stop}\} \]

where for \(\pi = k_1 \ldots k_m \):

\[\beta^* = [k_1]^* \circ \ldots \circ [k_m]^* \]

Our complete lattice is given by:

\[B = 2^\text{Expr} \text{Vars} \]

where \(\mathbb{C} = \square \).

The effect \([k]^*\) of an edge \(k = (u, \text{lab}, v)\) only depends on \(\text{lab} \), i.e., \([k]^* = [\text{lab}]^*\) where:

\[
\begin{align*}
[k]^* B &= B \\
[\text{Pos}(e)]^* B &= [\text{Neg}(e)]^* B = B \cup \{e\} \\
[x = e]^* B &= (B \setminus \text{Expr}_e) \cup \{e\} \\
[x = M[e]^* B &= (B \setminus \text{Expr}_e) \cup \{e\} \\
[M[e_1 = c_1]^* B &= B \cup \{c_1, e_2\} \\
[M[e_1 = c_2]^* B &= B \cup \{c_1, e_2\} \\
\end{align*}
\]

Our complete lattice is given by:

\[B = 2^\text{Expr} \text{Vars} \]

where \(\mathbb{C} = \square \).

The effect \([k]^*\) of an edge \(k = (u, \text{lab}, v)\) only depends on \(\text{lab} \), i.e., \([k]^* = [\text{lab}]^*\) where:

\[
\begin{align*}
[k]^* B &= B \\
[\text{Pos}(e)]^* B &= [\text{Neg}(e)]^* B = B \cup \{e\} \\
[x = e]^* B &= (B \setminus \text{Expr}_e) \cup \{e\} \\
[x = M[e]^* B &= (B \setminus \text{Expr}_e) \cup \{e\} \\
[M[e_1 = c_1]^* B &= B \cup \{c_1, e_2\} \\
[M[e_1 = c_2]^* B &= B \cup \{c_1, e_2\} \\
\end{align*}
\]

The diagram at the bottom right shows a specific case where \(x = e \) and \(e = c_1 \), with \(e \in \mathbb{C} \).
These effects are all distributive. Thus, the least solution of the constraint system yields precisely the MOP — given that stop is reachable from every program point.

Example

\[z = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]

\[
\begin{array}{c|c}
\text{7} & \emptyset \\
\text{6} & \{y_1 + y_2\} \\
\text{5} & \{x + 1\} \\
\text{4} & \{x + 1\} \\
\text{3} & \{x + 1\} \\
\text{2} & \{x + 1\} \\
\text{1} & \emptyset \\
\text{0} & \emptyset \\
\end{array}
\]

A point \(u \) is called safe for \(e \), if \(e \in A[u] \cup B[u] \), i.e., \(e \) is either available or very busy.

Idea

- We insert computations of \(e \) such that \(e \) becomes available at all safe program points.
- We insert \(T_e = c_e \) after every edge \(\{u, lab, v\} \) with \(e \in B[v] \cap \{lab\} \cap (A[u] \cup B[u]) \).

In the Example

\[z = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]

\[
\begin{array}{c|c|c}
\text{A} & \text{B} \\
\hline
\text{0} & \emptyset & \emptyset \\
\text{1} & \emptyset & \emptyset \\
\text{2} & \emptyset & \{x + 1\} \\
\text{3} & \emptyset & \{x + 1\} \\
\text{4} & \{x + 1\} & \{x + 1\} \\
\text{5} & \emptyset & \{x + 1\} \\
\text{6} & \{x + 1\} & \{y_1 + y_2\} \\
\text{7} & \{x + 1, y_1 + y_2\} & \emptyset \\
\end{array}
\]

In the Example

\[z = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]

\[
\begin{array}{c|c|c}
\text{A} & \text{B} \\
\hline
\text{0} & \emptyset & \emptyset \\
\text{1} & \emptyset & \emptyset \\
\text{2} & \emptyset & \{x + 1\} \\
\text{3} & \emptyset & \{x + 1\} \\
\text{4} & \{x + 1\} & \{x + 1\} \\
\text{5} & \emptyset & \{x + 1\} \\
\text{6} & \{x + 1\} & \{y_1 + y_2\} \\
\text{7} & \{x + 1, y_1 + y_2\} & \emptyset \\
\end{array}
\]
A point \(u \) is called safe for \(e \), if \(e \in A[u] \cup B[u] \), i.e., \(e \) is either available or very busy.

Idea
- We insert computations of \(e \) such that \(e \) becomes available at all safe program points.
- We insert \(T_e = e; \) after every edge \((u, \text{lab}, v) \) with
 \[
 e \in B[v] \setminus \{\text{lab}\} \cup (A[u] \cup B[u])
 \]

Transformation 5.1
- \(T_e = e; \quad (e \in B[v] \setminus \{\text{lab}\} \cup (A[u] \cup B[u])) \)
- \(T_e = e; \quad (e \in B[v]) \)
Transformation 5.2

\[
\text{\begin{align*}
\mathbb{E} & = e; \\
x & = T_c;
\end{align*}}\]

// analogously for the other uses of \(e\)
// at old edges of the program.

Transformation 5.1

\[
\text{\begin{align*}
\mathbb{E} & = e; \\
x & = T_c; \\
(\mathbb{E} \in \mathbb{E}[\text{lab}]_A(\mathbb{E}[u] \cup \mathbb{E}[u]))
\end{align*}}\]

\[
\text{\begin{align*}
\mathbb{E} & = e; \\
(\mathbb{E} \in \mathbb{E}[\text{lab}])
\end{align*}}\]

Correctness

Let \(\pi\) denote a path reaching \(v\) after which a computation of an edge with \(e\) follows.

Then there is a maximal suffix of \(\pi\) such that for every edge \(k = (u, \text{lab}, u')\) in the suffix:

\[
e \in [\text{lab}]_A(\mathbb{E}[u] \cup \mathbb{E}[u])
\]

In the Example

\[
\begin{array}{c|cc}
\text{ step } & A & B \\
\hline
0 & 0 & 0 \\
1 & 0 & 0 \\
2 & 0 & \{x+1\} \\
3 & 0 & \{x+1\} \\
4 & \{x+1\} & \{x+1\} \\
5 & 0 & \{x+1\} \\
6 & \{x+1\} & \{y_1+y_2\} \\
7 & \{x+1, y_1+y_2\} & 0 \\
\end{array}
\]
Correctness

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge $k = (u, \text{lab}, u')$ in the suffix:

$$e \in \{\text{lab}\}_{A}^{1}(A[u] \cup B[v])$$

In particular, no variable in e receives a new value.

Then $T_e = e_i$ is inserted before the suffix.

Correctness

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge $k = (u, \text{lab}, u')$ in the suffix:

$$e \in \{\text{lab}\}_{A}^{1}(A[u] \cup B[v])$$

In particular, no variable in e receives a new value.

Then $T_e = e_i$ is inserted before the suffix.
We conclude

- Whenever the value of \(e \) is required, \(e \) is available.
 \[\implies\text{correctness of the transformation}\]

- Every \(T = e \); which is inserted into a path corresponds to an \(e \) which is replaced with \(T \).
 \[\implies\text{non-degradation of the efficiency}\]

1.8 Application: Loop-invariant Code

Example

\[
\text{for } (i = 0; i < n; i++) \\
 a[i] = b + 3; \\
\]

// The expression \(b + 3 \) is recomputed in every iteration.
// This should be avoided!

We conclude

- Whenever the value of \(e \) is required, \(e \) is available.
 \[\implies\text{correctness of the transformation}\]

- Every \(T = e \); which is inserted into a path corresponds to an \(e \) which is replaced with \(T \).
 \[\implies\text{non-degradation of the efficiency}\]

Caveat \(T = b + 3; \) may not be placed before the loop:

\[\implies\text{There is no decent place for } T = b + 3;\]
Caveat \(T = b + 3 \); may not be placed before the loop:

\[
\begin{align*}
0 & \quad i = 0; \\
1 & \quad T = b + 3; \\
7 & \quad \text{Neg}(i < n) \\
3 & \quad y = T; \\
4 & \quad A_1 = A + i; \\
5 & \quad M[A_1] = y; \\
4 & \quad i = i + 1;
\end{align*}
\]

\[\implies \text{There is no decent place for } T = b + 3.\]

The Control-flow Graph

\[
\begin{align*}
0 & \quad i = 0; \\
1 & \quad \text{Neg}(i < n) \\
7 & \quad \text{Pos}(i < n) \\
2 & \quad y = b + 3; \\
3 & \quad A_1 = A + i; \\
4 & \quad M[A_1] = y; \\
5 & \quad i = i + 1;
\end{align*}
\]

\[\implies \text{There is no decent place for } T = b + 3.\]

Caveat \(T = b + 3 \); may not be placed before the loop:

\[
\begin{align*}
0 & \quad i = 0; \\
1 & \quad T = b + 3; \\
7 & \quad \text{Neg}(i < n) \\
2 & \quad y = T; \\
3 & \quad A_1 = A + i; \\
4 & \quad M[A_1] = y; \\
4 & \quad i = i + 1;
\end{align*}
\]

\[\implies \text{There is no decent place for } T = b + 3.\]

... now there is a place for \(T = c \);

\[
\begin{align*}
0 & \quad i = 0; \\
1 & \quad \text{Neg}(i < n) \\
7 & \quad \text{Pos}(i < n) \\
2 & \quad y = T; \\
3 & \quad A_1 = A + i; \\
4 & \quad M[A_1] = y; \\
4 & \quad i = i + 1;
\end{align*}
\]
Idea: Transform into a do-while-loop ...

... now there is a place for $T = e_i$.

Idea: Transform into a do-while-loop ...