Final Question

Why is a (or the least) solution of the constraint system useful???

For a complete lattice \mathcal{D}, consider systems:

\[
\begin{align*}
\mathcal{I}_{\text{start}} & \quad d_0 \\
\mathcal{I}[v] & \quad \mathcal{I}^{I[v]} (I[u]) \\
\end{align*}
\]

where $d_0 \in \mathcal{D}$ and all $\mathcal{I}^{I[v]} : \mathcal{D} \to \mathcal{D}$ are monotonic ...

Wanted: MOP (Merge Over all Paths)

\[
\mathcal{I}^*[v] = \bigcup \{ \mathcal{I}^{I[v]} d_0 | \pi : \text{start} \to^* v \}
\]
... end of background on: Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice \mathcal{D}, consider systems:

\[
\mathcal{I}[\text{start}] \ni d_0
\]
\[
\mathcal{I}[v] \ni (k)^{\mathcal{I}[u]} \quad k = (u, v) \quad \text{edge}
\]

where $d_0 \in \mathcal{D}$ and all $(k)^{\mathcal{I}[u]} : \mathcal{D} \to \mathcal{D}$ are monotonic ...

\implies Monotonic Analysis Framework

Wanted: MOP (Merge Over all Paths)

\[
\mathcal{I}^*[v] = \bigcup\{ ([\pi])^* d_0 \mid \pi : \text{start} \to^* v \}
\]

Proof: Induction on the length of π.

Theorem Kam, Ullman 1975

Assume \mathcal{I} is a solution of the constraint system. Then:

\[
\mathcal{I}[v] \supseteq \mathcal{I}^*[v] \quad \text{for every } v
\]
Proof: Induction on the length of π.

Foundation: $\pi = \varepsilon$ (empty path)

Then:

$[\pi]^2 d_0 = [\varepsilon]^2 d_0 = d_0 \subseteq \mathcal{I}[\text{start}]$

Step: $\pi = \pi'k$ for $k = (u, v)$ edge.

Proof: Induction on the length of π.

Foundation: $\pi = \varepsilon$ (empty path)

Then:

$[\pi]^2 d_0 = [\varepsilon]^2 d_0 = d_0 \subseteq \mathcal{I}[\text{start}]$

Step: $\pi = \pi'k$ for $k = (u, v)$ edge.

Then:

$[\pi']^1 d_0 \subseteq \mathcal{I}[u] \quad \text{by I.H. for } \pi$

$[\pi']^1 d_0 = [k] \mathcal{I}[\mathcal{I}[u]] \quad \text{since } [k]^2 \text{ monotonic}$

$\subseteq \mathcal{I}[v] \quad \text{since } \mathcal{I} \text{ solution}$
Disappointment

Are solutions of the constraint system just upper bounds ???

Answer

In general: yes

With the notable exception when all functions $[k]^4$ are distributive ...

Has developed the operating system CP/M and GUIs for PCs.
Has developed the operating system CP/M and GUIs for PCs.

The function \(f : D_1 \rightarrow D_2 \) is called

- **distributive**, if \(f(\bigcup X) = \bigcup \{ f(x) \mid x \in X \} \) for all \(\emptyset \neq X \subseteq D \);
- **strict**, if \(f \perp = \perp \).
- **totally distributive**, if \(f \) is distributive and strict.

Examples

- \(f \bot = a \cap \emptyset \cup b \) for \(a, b \subseteq U \).

Strictness: \(f \emptyset = a \cap \emptyset \cup b = b = \emptyset \) whenever \(b = \emptyset \).
The function \(f : D_1 \rightarrow D_2 \) is called

- **distributive**, if \(f (\bigcup X) = \bigcup \{ f x \mid x \in X \} \) for all \(\emptyset \neq X \subseteq D; \)
- **strict**, if \(f \bot = \bot. \)
- **totally distributive**, if \(f \) is distributive and strict.

Examples

- \(f x = x \cap a \cup b \) for \(\forall a, b \in D \).
- **Strictness**: \(f \emptyset = \emptyset \cap a \cup b = b = \emptyset \) whenever \(b = \emptyset \)
- **Distributivity**: \[
f(x_1 \cup x_2) = a \cap (x_1 \cup x_2) \cup b = a \cap x_1 \cup a \cap x_2 \cup b = f(x_1) \cup f(x_2)
\]

D_1 = D_2 = \mathbb{N} \cup \{ \infty \}, \quad \text{inc} \ x = x + 1

Strictness: \(f \bot = \text{inc} \ 0 = 1 \neq \bot \)

Distributivity: \[
f(\bigcup X) = \bigcup \{ f x + 1 \mid x \in X \} \quad \text{for} \quad \emptyset \neq X
\]
• $D_1 = D_2 = N \cup \{\infty\}, \quad \text{inc} \ x = x + 1$

 Strictness: $f_\bot = \text{inc} \ 0 = 1 \neq \bot$

 Distributivity: $f(\bigcup X) = \bigcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$

• $D_1 = (N \cup \{\infty\})^2, \quad D_2 = N \cup \{\infty\}, \quad f(x_1, x_2) = x_1 + x_2$

Remark

If $f : D_1 \to D_2$ is distributive, then also monotonic.

• $D_1 = D_2 = N \cup \{\infty\}, \quad \text{inc} \ x = x + 1$

 Strictness: $f_\bot = \text{inc} \ 0 = 1 \neq \bot$

 Distributivity: $f(\bigcup X) = \bigcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$

• $D_1 = (N \cup \{\infty\})^2, \quad D_2 = N \cup \{\infty\}, \quad f(x_1, x_2) = x_1 + x_2$

 Strictness: $f_\bot = 0 + 0 = 0$

• $D_1 = D_2 = N \cup \{\infty\}, \quad \text{inc} \ x = x + 1$

 Strictness: $f_\bot = \text{inc} \ 0 = 1 \neq \bot$

 Distributivity: $f(\bigcup X) = \bigcup \{x + 1 \mid x \in X\}$ for $\emptyset \neq X$

• $D_1 = (N \cup \{\infty\})^2, \quad D_2 = N \cup \{\infty\}, \quad f(x_1, x_2) = x_1 + x_2$

 Strictness: $f_\bot = 0 + 0 = 0$

 Distributivity:

 $f((1, 4) \cup (4, 1)) = f(4, 4) = 8$

 $\neq 5 = f(1, 4) \cup f(4, 1)$
Remark

If $f : D_1 \rightarrow D_2$ is distributive, then also monotonic.

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

Remark

If $f : D_1 \rightarrow D_2$ is distributive, then also monotonic.

Obviously: $a \sqsubseteq b$ iff $a \sqcup b = b$.

From that follows:

$$fb = f(a \sqcup b) = fa \sqcup fb \implies fa \sqsubseteq fb$$
Assumption: all \(v \) are reachable from \(\text{start} \).

Then:

Theorem \quad \text{Kildall 1972}

If all effects of edges \([k]^i \) are distributive, then: \(I^*[v] = I[v] \) for all \(v \).

Proof

It suffices to prove that \(I^* \) is a solution!

For this, we show that \(I^* \) satisfies all constraints.
(1) We prove for \(\text{start} \):

\[
I^* [\text{start}] = \bigsqcup \{ [\pi]^d d_0 \mid \pi : \text{start} \rightarrow^* \text{start} \}
\]
\[= \bigsqcup \{ [k]^d d_0 \mid k : \text{start} \rightarrow^* \text{start} \}
\]
\[= \bigsqcup \{ \{ \pi[k] \}^d d_0 \mid \pi' : \text{start} \rightarrow^* 0 \}
\]
\[= \bigsqcup \{ [k]^d \{ [\pi']^d d_0 \mid \pi' : \text{start} \rightarrow^* 0 \} \}
\]
\[= \bigsqcup \{ [k]^d (I^*[0]) \}
\]

since \(\{ \pi' \mid \pi' : \text{start} \rightarrow^* 0 \} \) is non-empty.

(2) For every \(k = (u, v) \) we prove:

\[
I^*[k] = \bigsqcup \{ [\pi]^d d_0 \mid \pi : \text{start} \rightarrow^* v \}
\]
\[= \bigsqcup \{ [\pi[u]]^d d_0 \mid \pi' : \text{start} \rightarrow^* u \}
\]
\[= \bigsqcup \{ [k]^d \{ [\pi'[]']^d d_0 \mid \pi' : \text{start} \rightarrow^* u \} \}
\]
\[= \bigsqcup \{ [k]^d \{ I^*[u] \} \}
\]

Caveat

- **Reachability** of all program points cannot be abandoned!

Consider:

\[\xymatrix{\cdot\ar[r] & 7 \ar[r] & 0 \ar[r] & 1 \ar[r] & \text{inc} \ar[r] & 2 \ar[r] & \cdot}
\]

where \(D = \mathbb{N} \cup \{ \infty \} \)

Then:

\[
I[2] = \text{inc} 0 = \{ 0 \}
\]

\[
I^*[2] = \bigsqcup \{ 0 \} = 0
\]

Summary and Application

\[
\begin{aligned}
(a \cup (x_1 \cap x_2)) \cap b &= ((a \cup x_1) \cap (a \cup x_2)) \cap b \\
&= ((a \cup x_1) \cap b) \cap ((a \cup x_2) \cap b)
\end{aligned}
\]
Summary and Application

→ The effects of edges of the analysis of availability of expressions are distributive:

\[
(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b \\
= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)
\]

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration.

→ The effects of edges of the analysis of availability of expressions are distributive:

\[
(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b \\
= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)
\]

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration.

→ If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP.

1.2 Removing Assignments to Dead Variables

Example:

1: \(x = y + 2;\)
2: \(y = 5;\)
3: \(x = y + 3;\)

The value of \(x\) at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable \(x\) dead at these program points.

Example:

1: \(x = y + 2;\)
2: \(y = 5;\)
3: \(x = y + 3;\)

The value of \(x\) at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable \(x\) dead at these program points.

:-)
Note:

→ Assignments to dead variables can be removed :)
→ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable \(x \) is called live at \(u \) along the path \(\pi \) starting at \(u \) relative to a set \(X \) of variables either:

if \(x \in X \) and \(\pi \) does not contain a definition of \(x \); or:

if \(\pi \) can be decomposed into: \(\pi = \pi_1 k \pi_2 \) such that:

• \(k \) is a use of \(x \); and
• \(\pi_1 \) does not contain a definition of \(x \).

Thereby, the set of all defined or used variables at an edge \(k = (u, la, b, v) \) is defined by:

<table>
<thead>
<tr>
<th>lab</th>
<th>used</th>
<th>defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos(e)</td>
<td>Vars(e)</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Neg(e)</td>
<td>Vars(e)</td>
<td>\emptyset</td>
</tr>
<tr>
<td>x = c;</td>
<td>Vars(e)</td>
<td>{x}</td>
</tr>
<tr>
<td>x = M[e];</td>
<td>Vars(e)</td>
<td>{x}</td>
</tr>
<tr>
<td>M[e_1] = c_2;</td>
<td>Vars(e_1) \cup Vars(e_2)</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A variable \(x \) which is not live at \(u \) along \(\pi \) (relative to \(X \)) is called dead at \(u \) along \(\pi \) (relative to \(X \)).

Example:

\[
\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}
\]

\[
\begin{array}{c} x = y + 2; \quad y = 5; \quad x = y + 3. \end{array}
\]

where \(X = \emptyset \). Then we observe:

<table>
<thead>
<tr>
<th>#</th>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{y}</td>
<td>{z}</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>{x, y}</td>
</tr>
<tr>
<td>2</td>
<td>{y}</td>
<td>{z}</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>{x, y}</td>
</tr>
</tbody>
</table>

The variable \(x \) is live at \(u \) (relative to \(X \)) if \(x \) is live at \(u \) along some path to the exit (relative to \(X \)). Otherwise, \(x \) is called dead at \(u \) (relative to \(X \)).

Question:

How can the sets of all dead/live variables be computed for every \(u \) ?

Idea:

For every edge \(k = (u, v) \), define a function \([k]^k\) which transforms the set of variables which are live at \(v \) into the set of variables which are live at \(u \).
Let \(L = 2^{\text{Vars}} \).

For \(k = (_ , \text{lab} , _) \), define \([k]^4 = [\text{lab}]^4\) by:

\[
\begin{align*}
[k]^4 L &= L \\
\left[\text{Pos}(e)\right]^4 L &= \left[\text{Neg}(e)\right]^4 L = L \cup \text{Vars}(e) \\
[x = e]^4 L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e]_1]^4 L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2]^4 L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]

\[\boxed{\mathfrak{X} = \mathfrak{X} + \mathfrak{y}} \]

We verify that these definitions are meaningful \(: \)

\[\begin{align*}
x = y + 2; & \quad y = 5; & \quad x = y + 2; & \quad M[y] = x;
\end{align*}\]
We verify that these definitions are meaningful \(\therefore \)

\[
x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;
\]

The set of variables which are live at \(u \) then is given by:

\[
\mathcal{L}^*[u] = \bigcup \{ \{x\} : x \in \mathcal{L}^*[u] \}
\]

... literally:

- The paths start in \(u \) \(\therefore \)
 \[\implies \text{ As partial ordering for } L, \text{ we use } \subseteq = \subseteq. \]
- The set of variables which are live at program exit is given by the set \(X \) \(\therefore \)

Transformation 2:

\[
x \not\in \mathcal{L}^*[u]
\]

Correctness Proof:

\[\therefore \text{Correctness of the effects of edges: If } L \text{ is the set of variables which are live at the exit of the path } \pi, \text{ then } \{x\} L \text{ is the set of variables which are live at the beginning of } \pi \therefore \]

\[\therefore \text{Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant } \therefore \]

\[\therefore \text{Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values } \therefore \]
Computation of the sets $\mathcal{L}^*[u]$:

1. Collecting constraints:
 \[
 \mathcal{L}_{\text{step}} \supseteq X \\
 \mathcal{L}[u] \supseteq [k]^2(\mathcal{L}[v]) \\
 k = (u, u, v) \text{ edge}
 \]

2. Solving the constraint system by means of RR iteration.
 Since \mathcal{L} is finite, the iteration will terminate \therefore

3. If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[k]^2$ are distributive \therefore

Transformation 2:

- $x \notin \mathcal{L}^*[v]$
- $x = c$
- $x \notin \mathcal{L}^*[v]$
- $x = M[e];$
- $x \notin \mathcal{L}^*[v]$