Helmut Seidl

Program Optimization

TU München
Winter 2015/16

0 Introduction

Observation 1 Intuitive programs often are inefficient.

Example

```c
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
    }
}
```
Inefficiencies

- Addresses $a[i], a[j]$ are computed three times
- Values $a[i], a[j]$ are loaded twice

Improvement

- Use a pointer to traverse the array a;
- store the values of $a[i], a[j]$!

```c
void swap (int *p, int *q) {
    int t, ai, aj;
    ai = *p; aj = *q;
    if (ai > aj) {
        t = aj;
        *q = ai;
        *p = t;     // t can also be
              }        // eliminated!
    
}
```

Observation 2

Higher programming languages (even C) abstract from hardware and efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples

- Filling of delay slots;
- Utilization of special instructions;
- Re-organization of memory accesses for better cache behavior;
- Removal of (useless) overflow/range checks.
0 Introduction

Observation 1
Intuitive programs often are inefficient.

Example
```c
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
    }
}
```

Observation 2
Higher programming languages (even C) abstract from hardware and efficiency.

It is up to the compiler to adapt intuitively written program to hardware.

Examples

... Filling of delay slots;
... Utilization of special instructions;
... Re-organization of memory accesses for better cache behavior;
... Removal of (useless) overflow/range checks.

Observation 3
Programm-improvements need not always be correct!

Example
```c
y = f() + f();    \Rightarrow y = 2 * f();
```

Idea: Save second evaluation of \(f() \) ...
Observation 3
Program Improvements need not always be correct!

Example
\[y = f() + f(); \quad \implies \quad y = 2 \times f(); \]

Idea: Save the second evaluation of \(f() \) ???

Problem: The second evaluation may return a result different from the first; (e.g., because \(f() \) reads from the input

Consequences

\[\implies \quad \text{Optimizations have assumptions.} \]
\[\implies \quad \text{The assumption must be:} \]
\[\quad \bullet \text{formalized,} \]
\[\quad \bullet \text{checked!} \]
\[\implies \quad \text{It must be proven that the optimization is correct, i.e.,} \]
\[\quad \text{preserves the semantics !!!} \]

Observation 4
Optimization techniques depend on the programming language:

→ which inefficiencies occur;
→ how analyzable programs are;
→ how difficult/impossible it is to prove correctness ...

Example Java

Unavoidable Inefficiencies

* Array-bound checks;
* Dynamic method invocation;
* Bombastic object organization ...

Analyzability

+ no pointer arithmetic;
+ no pointer into the stack;
− dynamic class loading;
− reflection, exceptions, threads, ...
Correctness proofs
+ more or less well-defined semantics;
- features, features, features;
- libraries with changing behavior ...

... in this course:

a simple imperative programming language with

- variables // registers
- $R = e$; // assignments
- $R = M[e]$; // loads
- $M[e_1] = e_2$; // stores
- if (e) s_1 else s_2 // conditional branching
- goto L; // no loops

Remark

- For the beginning, we omit procedures ...
- External procedures are taken into account through a statement $f()$ for an unknown procedure f.
 \[\Rightarrow\] intra-procedural
 \[\Rightarrow\] kind of an intermediate language in which (almost)
everything can be translated.

Example \texttt{swap ()}
Optimization 1: \[1 \times R \quad \Longrightarrow \quad R \]

Optimization 2: Reuse of subexpressions

\[
A_1 \equiv A_5 \equiv A_6 \\
A_2 \equiv A_3 \equiv A_4 \\
M[A_1] \equiv M[A_5] \\
M[A_2] \equiv M[A_3] \\
R_1 \equiv R_3
\]
Optimization 1: \[1 \times R \quad \rightarrow \quad R \]

Optimization 2: Reuse of subexpressions

\[
A_1 == A_5 == A_6 \\
A_2 == A_3 == A_4
\]

\[
M[A_1] == M[A_5] \\
M[A_2] == M[A_3]
\]

\[R_1 == R_3 \]

By this, we obtain:

\[
A_1 = A_0 + i; \\
R_1 = M[A_1]; \\
A_2 = A_0 + j; \\
R_2 = M[A_2]; \\
\text{if } (R_1 > R_2) \{ \\
\text{*** } R_2; \\
M[A_2] = R_3; \\
M[A_1] = ** R_2
\}
\]

Optimization 3: Contraction of chains of assignments

Gain

<table>
<thead>
<tr>
<th></th>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>load</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>store</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>=</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
1 Removing superfluous computations

1.1 Repeated computations

Idea

If the same value is computed repeatedly, then
→ store it after the first computation;
→ replace every further computation through a look-up!

⇒⇒⇒ Availability of expressions
⇒⇒⇒ Memoization

Problem: Identify repeated computations!

Example

\[
\begin{align*}
z &= 1; \\
y &= M[17]; \\
A: \quad x_1 &= \lfloor y + z \rfloor; \\
\quad \ldots \\
B: \quad x_2 &= \lfloor y + z \rfloor;
\end{align*}
\]

Remark

\(B \) is a repeated computation of the value of \(y + z \), if:

(1) \(A \) is always executed before \(B \); and

(2) \(y \) and \(z \) at \(B \) have the same values as at \(A \).

⇒⇒⇒ We need:

→ an operational semantics;
→ a method which identifies at least some repeated computations …
Problem: Identify repeated computations!

Example

\[
\begin{align*}
z & = 1; \\
y & = M[17]; \\
A: & \quad x_1 = y + z; \\
\quad \cdots \\
B: & \quad x_2 = y + z;
\end{align*}
\]

Remark

\(B\) is a repeated computation of the value of \(y + z\), if:

1. \(A\) is always executed before \(B\); and
2. \(y\) and \(z\) at \(B\) have the same values as at \(A\).

\[\Rightarrow\] We need:
- an operational semantics;
- a method which identifies at least some repeated computations ...