Discussion:

- Integer Linear Programming (ILP) can decide satisfiability of a finite set of equations/inequalities over \mathbb{Z} of the form:
 \[\sum_{i=1}^{n} a_i \cdot x_i = b \quad \text{bzw.} \quad \sum_{i=1}^{n} a_i \cdot x_i \geq b, \quad a_i \in \mathbb{Z} \]
- Moreover, a (linear) cost function can be optimized :-)
- Warning: The decision problem is in general, already NP-hard !!!
- Notwithstanding that, surprisingly efficient implementations exist.
- Not just loop fusion, but also other re-organizations of loops yield ILP problems ...

Background 5: Presburger Arithmetic

Many problems in computer science can be formulated without multiplication :-)

Let us first consider two simple special cases ...

1. Linear Equations

\[\exists x, y, z \cdot \begin{align*}
2x + 3y &= 21 \\
x - y + 5z &= 3
\end{align*} \]

Question:

- Is there a solution over \mathbb{Q} ? \(\n\)
- Is there a solution over \mathbb{Z} ? \(\n\)
- Is there a solution over \mathbb{N} ? \(\n\)

Let us reconsider the equations:

\[\begin{align*}
2x + 3y &= 24 \\
x - y + 5z &= 3
\end{align*} \]
Answers:

- Is there a solution over \mathbb{Q}? Yes
- Is there a solution over \mathbb{Z}? No
- Is there a solution over \mathbb{N}? No

Complexity:

- Is there a solution over \mathbb{Q}? Polynomial
- Is there a solution over \mathbb{Z}? Polynomial
- Is there a solution over \mathbb{N}? NP-hard

Question:

- Is there a solution over \mathbb{Q}?
- Is there a solution over \mathbb{Z}?
- Is there a solution over \mathbb{N}?

Let us reconsider the equations:

\[
2x + 3y = 24 \\
x - y + 5z = 3
\]

Solution Method for Integers:

Observation 1:

\[
a_1x_1 + \ldots + a_kx_k = b \quad (\forall i : a_i \neq 0)
\]

has a solution iff

\[
\gcd(a_1, \ldots, a_k) \mid b
\]

\[
\gcd(a_1, a_2) \mid a_1 x_1 + a_2 x_2 \leq a
\]
Example:

\[5y - 10z = 18 \]

has no solution over \(\mathbb{Z} \)

Example:

\[5y - 10z = 18 \]

has no solution over \(\mathbb{Z} \)

Observation 2:

Adding a multiple of one equation to another does not change the set of solutions

Example:

\[
\begin{align*}
2x + 3y &= 24 \\
x - y + 5z &= 3
\end{align*}
\]

Example:

\[
\begin{align*}
2x + 3y &= 24 \\
x - y + 5z &= 3
\end{align*}
\]

\[
\begin{align*}
5y - 10z &= 18 \\
x - y + 5z &= 3
\end{align*}
\]
Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

\[
\begin{array}{c|cc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\begin{array}{c}
\begin{align}
5y - 10z &= 18 \\
x - y + 5z &= 3 \\
\end{align}
\end{array}
\]

\[
\begin{array}{c|c}
1 & 5y = 18 \\
0 & x - y + 3z = 3 \\
0 & 0 \\
\end{array}
\]

Example:

\[
\begin{align}
2x + 3y &= 24 \\
x - y + 5z &= 3 \\
\end{align}
\]

\[
\begin{array}{c}
\begin{align}
5y - 10z &= 18 \\
x - y + 5z &= 3 \\
\end{align}
\end{array}
\]

Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...

\[
\begin{array}{c|cc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\begin{array}{c}
\begin{align}
5y - 10z &= 18 \\
x - y + 5z &= 3 \\
\end{align}
\end{array}
\]

\[
\begin{array}{c|c}
1 & 5y = 18 \\
0 & x - y + 3z = 3 \\
0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c}
1 & 5y = 18 \\
0 & x - y = 3 \\
0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c}
1 & 5y = 18 \\
0 & x - y = 3 \\
0 & 0 \\
\end{array}
\]

\[
\begin{array}{c}
\begin{align}
\text{triangular form}!!
\end{align}
\end{array}
\]
Observation 3:

Adding multiples of columns to another column is an invertible transformation which we keep track of in a separate matrix ...
Example

\[
\begin{array}{ccc|c}
1 & 0 & -3 & 5y \\
0 & 1 & 2 & x - y = 3 \\
0 & 0 & 1 &
\end{array}
\]

One special solution:

\[[6, 3, 0]^T \]

All solutions of the homogeneous system are spanned by:

\[[0, 0, 1]^T \]

Example

\[
\begin{array}{ccc|c}
1 & 0 & -3 & 5y \\
0 & 1 & 2 & x - y = 3 \\
0 & 0 & 1 &
\end{array}
\]

One special solution:

\[[6, 3, 0]^T \]

All solutions of the homogeneous system are spanned by:

\[[0, 0, 1]^T \]

Example

\[
\begin{array}{ccc|c}
1 & 0 & -3 & 5y \\
0 & 1 & 2 & x - y = 3 \\
0 & 0 & 1 &
\end{array}
\]

One special solution:

\[[6, 3, 0]^T \]

All solutions of the homogeneous system are spanned by:

\[[0, 0, 1]^T \]

Solving over \(\mathbb{N} \)

- ... is of major practical importance;
- ... has led to the development of many new techniques;
- ... easily allows to encode NP-hard problems;
- ... remains difficult if just three variables are allowed per equation.
2. **One Polynomial Special Case:**

\[
\begin{align*}
 x & \geq y + 5 \\
 19 & \geq x \\
 y & \geq 13 \\
 y & \geq x - 7
\end{align*}
\]

- There are at most 2 variables per inequation;
- no scaling factors.

3. **A General Solution Method:**

Idea: Fourier-Motzkin Elimination

- Successively remove individual variables \(x \)!
- All in-equations with **positive** occurrences of \(x \) yield **lower** bounds.
- All in-equations with **negative** occurrences of \(x \) yield **upper** bounds.
- All lower bounds must be at most as big as all upper bounds \(:-) \)
Example:

9 \leq 3x_1 + x_2 \quad (1)
4 \leq x_1 + 2x_2 \quad (2)
0 \leq 2x_1 - x_2 \quad (3)
6 \leq 2x_1 + 6x_2 \quad (4)
-11 \leq -x_1 - 2x_2 \quad (5)
-17 \leq -6x_1 + 2x_2 \quad (6)
-4 \leq -x_2 \quad (7)

3. A General Solution Method:

Idea: Fourier-Motzkin Elimination

- Successively remove individual variables x!
- All in-equations with positive occurrences of x yield lower bounds.
- All in-equations with negative occurrences of x yield upper bounds.
- All lower bounds must be at most as big as all upper bounds.

Example:

9 \leq 4x_1 + x_2 \quad (1)
4 \leq x_1 + 2x_2 \quad (2)
0 \leq 2x_1 - x_2 \quad (3)
6 \leq x_1 + 6x_2 \quad (4)
-11 \leq -x_1 - 2x_2 \quad (5)
-17 \leq -6x_1 + 2x_2 \quad (6)
-4 \leq -x_2 \quad (7)

For x_1 we obtain:

9 \leq 4x_1 + x_2 \quad (1)
4 \leq x_1 + 2x_2 \quad (2)
0 \leq 2x_1 - x_2 \quad (3)
6 \leq x_1 + 6x_2 \quad (4)
-11 \leq -x_1 - 2x_2 \quad (5)
-17 \leq -6x_1 + 2x_2 \quad (6)
-4 \leq -x_2 \quad (7)

If such an x_1 exists, all lower bounds must be bounded by all upper bounds, i.e.,
This is the one-variable case which we can solve exactly:

Example:

\[
\begin{align*}
9 & \leq 4x_1 + x_2 \quad (1) \\
4 & \leq x_1 + 2x_2 \quad (2) \\
0 & \leq 2x_1 - x_2 \\
6 & \leq x_1 + 6x_2 \\
-11 & \leq -x_1 - 2x_2 \quad (5) \\
-17 & \leq -6x_1 + 2x_2 \quad (6) \\
-4 & \leq -x_2 \quad (7)
\end{align*}
\]

From which we conclude: \(x_2 \in \left[\frac{7}{2}, 4\right] \) \(\implies \)

In General:

- The original system has a solution over \(\mathbb{Q} \) iff the system after elimination of one variable has a solution over \(\mathbb{Q} \) \(\implies \)
- Every elimination step may square the number of in-equations \(\implies \) exponential run-time \(\implies \)
- It can be modified such that it also decides satisfiability over \(\mathbb{Z} \) \(\implies \) Omega Test
\[
\begin{align*}
\frac{9}{4} - \frac{1}{2}x_2 & \leq 11 - 2x_2 & (1,5) \\
\frac{5}{4} - \frac{1}{2}x_2 & \leq \frac{5}{12} + \frac{1}{3}x_2 & (1,6) \\
4 - 2x_2 & \leq 11 - 2x_2 & (2,5) \\
4 - 2x_2 & \leq \frac{17}{6} + \frac{1}{3}x_2 & (2,6) \\
\frac{1}{2}x_2 & \leq 11 - 2x_2 & (3,5) \\
\frac{1}{2}x_2 & \leq \frac{17}{6} + \frac{1}{3}x_2 & (3,6) \\
6 - 6x_2 & \leq 11 - 2x_2 & (4,5) \\
6 - 6x_2 & \leq \frac{5}{6} + \frac{1}{3}x_2 & (4,6) \\
-4 & \leq -x_2 & (7)
\end{align*}
\]

Idea:

- We successively remove variables. Thereby we omit division ...
- If \(x \) only occurs with coefficient \(\pm 1 \), we apply Fourier-Motzkin elimination \(\therefore \)
- Otherwise, we provide a bound for a positive multiple of \(x \) ...

Consider, e.g., (1) and (6):

\[
\begin{align*}
6 \cdot x_1 & \leq 17 + 2x_2 \\
9 - x_2 & \leq 4 \cdot x_1
\end{align*}
\]

\[
\max \left\{ -1, \frac{1}{2}, -\frac{5}{3}, \frac{1}{3} \right\} \leq x_2 \leq \min \left\{ 5, \frac{22}{3}, 17, \frac{13}{3} \right\}
\]

From which we conclude: \(x_2 \in \left[\frac{1}{2}, 4 \right] \) \(\therefore \)

In General:

- The original system has a solution over \(\mathbb{Q} \) iff the system after elimination of one variable has a solution over \(\mathbb{Q} \) \(\therefore \)
- Every elimination step may square the number of in-equations \(\Longrightarrow \) exponential run-time \(\therefore \)
- It can be modified such that it also decides satisfiability over \(\mathbb{Z} \) \(\Longrightarrow \) Omega Test
\[
\begin{align*}
\frac{9}{4} - \frac{1}{2}x_2 &\leq 11 - 2x_2 \quad (1.5) \\
\frac{9}{4} - \frac{1}{4}x_2 &\leq \frac{9}{6} + \frac{1}{3}x_2 \quad (1.6) \\
4 - 2x_2 &\leq 11 - 2x_2 \quad (2.5) \\
4 - 2x_2 &\leq \frac{17}{6} + \frac{1}{3}x_2 \quad (2.6) \\
\frac{1}{6}x_2 &\leq 11 - 2x_2 \quad (3.5) \quad \text{or} \quad -22 \leq -5x_2 \quad (3.5) \\
\frac{1}{3}x_2 &\leq \frac{17}{6} + \frac{1}{3}x_2 \quad (3.6) \\
6 - 6x_2 &\leq 11 - 2x_2 \quad (4.5) \\
6 - 6x_2 &\leq \frac{17}{6} + \frac{1}{3}x_2 \quad (4.6) \\
-4 &\leq -x_2 \quad (7)
\end{align*}
\]

W.l.o.g., we only consider strict in-equalities:

\[
\begin{align*}
6 \cdot x_1 &< 18 + 2x_2 \\
8 - x_2 &< 4 \cdot x_1
\end{align*}
\]

... where we always divide by gcds:

\[
\begin{align*}
3 \cdot x_1 &< 9 + x_2 \\
8 - x_2 &< 4 \cdot x_1
\end{align*}
\]

This implies:

\[
3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)
\]

Idea:

- We successively remove variables. Thereby we omit division ...
- If \(x\) only occurs with coefficient \(\pm 1\), we apply Fourier-Motzkin elimination :-)
- Otherwise, we provide a bound for a positive multiple of \(x\) ...

Consider, e.g., (1) and (6):

\[
\begin{align*}
6 \cdot x_1 &\leq 17 + 2x_2 \\
9 - x_2 &\leq 4 \cdot x_1
\end{align*}
\]

W.l.o.g., we only consider strict in-equations:

\[
\begin{align*}
6 \cdot x_1 &< 18 + 2x_2 \\
8 - x_2 &< 4 \cdot x_1
\end{align*}
\]

... where we always divide by gcds:

\[
\begin{align*}
3 \cdot x_1 &< 9 + x_2 \\
8 - x_2 &< 4 \cdot x_1
\end{align*}
\]

This implies:

\[
3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)
\]
W.l.o.g., we only consider **strict** in-equations:

\[
\begin{align*}
6 \cdot x_1 &< 18 + 2x_2 \\
8 - x_2 &< 4 \cdot x_1
\end{align*}
\]

... where we always divide by gcd:

\[
\begin{align*}
3 \cdot x_1 &< 9 + x_2 \\
8 - x_2 &< 4 \cdot x_1
\end{align*}
\]

This implies:

\[
3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)
\]

We thereby obtain:

- If one derived in-equation is **unsatisfiable**, then also the overall system \(\implies \)
- If all derived in-equations are satisfiable, then there is a solution which, however, need not be **integer** \(\implies \)
- An integer solution is guaranteed to exist if there is **sufficient separation** between lower and upper bound \(\implies \)
- Assume \(\alpha < a \cdot x \) \quad \beta \cdot x < \beta \).

Then it should hold that:

\[
\beta \cdot \alpha < a \cdot \beta
\]

and moreover:

\[
[a \cdot b] < a \cdot \beta - b \cdot \alpha
\]
W.l.o.g., we only consider strict in-equations:

\[
6 \cdot x_1 < 18 + 2x_2 \\
8 - x_2 < 4 \cdot x_1
\]

... where we always divide by gcds:

\[
3 \cdot x_1 < 9 + x_2 \\
8 - x_2 < 4 \cdot x_1
\]

This implies:

\[
3 \cdot (8 - x_2) < 4 \cdot (9 + x_2)
\]

We thereby obtain:

- If one derived in-equation is unsatisfiable, then also the overall system :-(
- If all derived in-equations are satisfiable, then there is a solution which, however, need not be integer :-(
- An integer solution is guaranteed to exist if there is sufficient separation between lower and upper bound ...
- Assume \(a < a \cdot x \quad b \cdot x < b \).

Then it should hold that:

\[
b \cdot a < a \cdot b
\]

and moreover:

\[
\boxed{a \cdot b} < a \cdot \beta - b \cdot \alpha
\]

... in the Example:

\[
12 < 4 \cdot (9 + x_2) - 3 \cdot (8 - x_2)
\]

or:

\[
12 < 12 + 7x_2
\]

or:

\[
0 < x_2
\]

In the example, also these strengthened in-equations are satisfiable

\[
\implies \text{the system has a solution over } \mathbb{Z} \implies
\]

... in the Example:

\[
12 < 4 \cdot (9 + x_2) - 3 \cdot (8 - x_2)
\]

or:

\[
12 < 12 + 7x_2
\]

or:

\[
0 < x_2
\]

In the example, also these strengthened in-equations are satisfiable

\[
\implies \text{the system has a solution over } \mathbb{Z} \implies
\]
Discussion:

- If the strengthened in-equations are satisfiable, then also the original system. The reverse implication may be wrong :-(
- In the case where upper and lower bound are not sufficiently separated, we have:
 \[a \cdot b \leq b \cdot \alpha + a \cdot b \]
 or:
 \[b \cdot \alpha < ab \cdot x < b \cdot \alpha + a \cdot b \]
Division with \(b \) yields:
 \[\alpha < a \cdot x < \alpha + a \]
 \[\alpha + i = a \cdot x \text{ for some } i \in \{1, \ldots, a-1\} \] !!!
Presburger Arithmetic = full arithmetic
without multiplication

Arithmetic : highly undecidable :-(
even incomplete :-(

\[\exists x_1 \ldots, x_n . \ p(x_1, \ldots, x_n) = 0 \]