Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

\[
(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b \\
= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)
\]

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. ::)

→ If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP ::)

1.2 Removing Assignments to Dead Variables

Example:

1: \(x \leftarrow y + 2;\)

2: \(y = 5;\)

3: \(x = y + 3;\)

The value of \(x\) at program points 1, 2 is overwritten before it can be used.

Therefore, we call the variable \(x\) dead at these program points ::)
Note:

→ Assignments to dead variables can be removed :-)
→ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable \(x \) is called live at \(u \) along the path \(\pi \) starting at \(u \) relative to a set \(X \) of variables either:
- if \(x \in X \) and \(\pi \) does not contain a definition of \(x \); or:
- if \(\pi \) can be decomposed into: \(\pi = \pi_1 k \pi_2 \) such that:
 - \(k \) is a use of \(x \); and
 - \(\pi_1 \) does not contain a definition of \(x \).

Thereby, the set of all defined or used variables at an edge \(k = (u, lab, v) \) is defined by:

<table>
<thead>
<tr>
<th>lab</th>
<th>used</th>
<th>defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>Pos ((e))</td>
<td>Vars ((e))</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>Neg ((e))</td>
<td>Vars ((e))</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(x = e)</td>
<td>Vars ((e))</td>
<td>({ x })</td>
</tr>
<tr>
<td>(x = M[e])</td>
<td>Vars ((e))</td>
<td>({ x })</td>
</tr>
<tr>
<td>(M[e] = e _1 \cup Vars (e _2))</td>
<td>Vars ((e _1) \cup Vars (e _2))</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

Example:

A variable \(x \) which is not live at \(u \) along \(\pi \) (relative to \(X \)) is called dead at \(u \) along \(\pi \) (relative to \(X \)).

where \(X = \emptyset \). Then we observe:

<table>
<thead>
<tr>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 {y}</td>
<td>{x}</td>
</tr>
<tr>
<td>1 (\emptyset)</td>
<td>{x,y}</td>
</tr>
<tr>
<td>2 {y}</td>
<td>{x}</td>
</tr>
<tr>
<td>3 (\emptyset)</td>
<td>{x,y}</td>
</tr>
</tbody>
</table>
The variable \(x \) is live at \(u \) (relative to \(X \)) if \(x \) is live at \(u \) along some path to the exit (relative to \(X \)). Otherwise, \(x \) is called dead at \(u \) (relative to \(X \)).

Question:

How can the sets of all dead/live variables be computed for every \(u \)?

Let \(L = 2^{\text{Vars}} \).

For \(k = (u, _ , v) \), define \([k]^3\) by:

\[
\begin{align*}
[k]^3 L &= L \\
[\text{Pos}(e)]^3 L &= [\text{Neg}(e)]^3 L = L \cup \text{Vars}(e) \\
[x = c]^3 L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e]]^3 L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2]^3 L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
Let \(L = 2^\text{Vars} \).

For \(k = (_, lab, _) \), define \([k]^2 = [\text{lab}]^2 \) by:

\[
\begin{align*}
[k]^2 L &= L \\
[[\text{Pos}(e)]^2 L] &= L \cup \text{Vars}(e) \\
[[x = e]^2 L] &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e_1]^2 L] &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2]^2 L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]

\([k]^2 \) can again be composed to the effects of \([\pi]^2 \) of paths \(\pi = k_1 \ldots k_n \) by:

\[
[k]^2 = (k_1)^2 \circ \ldots \circ (k_n)^2
\]

We verify that these definitions are meaningful \(:-) \):

\[
\begin{align*}
x &= y + 2; & y &= 5; & x &= y + 2; & M[y] &= x;
\end{align*}
\]

\(\mathcal{L}^* [u] = \bigcup \{[\pi]^2 X \mid \pi : u \rightarrow^* \text{stop} \} \)

... literally:

- The paths start in \(u \) \(:-) \).

 \[\begin{array}{c}
 \quad \\
 \quad \\
 \quad \\
 \end{array}\]

 As partial ordering for \(L \) we use \(\subseteq \subseteq \).

- The set of variables which are live at program exit is given by the set \(X \) \(:-) \).
Transformation 2:

\[x = e; \quad x \notin L^*[e] \]

\[x = M[e]; \quad x \notin L^*[e] \]

Correctness Proof:

→ **Correctness of the effects of edges:** If \(L \) is the set of variables which are live at the exit of the path \(\pi \), then \([\pi]^E L\) is the set of variables which are live at the beginning of \(\pi \) :-)

→ **Correctness of the transformation along a path:** If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)

→ **Correctness of the transformation:** In any execution of the transformed programs, the live variables always receive the same values :-))
Computation of the sets $L^*[u]$:

1. Collecting constraints:

 $L_{\text{def}(u)} \supseteq X$

 $L[u] \supseteq \llbracket k \rrbracket (L[u])$

 $k = (u, \ldots, v)$ edge

2. Solving the constraint system by means of RR iteration.

 Since L is finite, the iteration will terminate :-)

3. If the exit is (formally) reachable from every program point, then the smallest solution L of the constraint system equals L^* since all $\llbracket k \rrbracket$ are distributive :-))

We verify that these definitions are meaningful :-)

\begin{align*}
x &= y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x;
\end{align*}

Correctness Proof:

$\therefore x = x \land a \land b$

→ Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π, then $\llbracket \pi \rrbracket^2 L$ is the set of variables which are live at the beginning of π :-)

→ Correctness of the transformation along a path. If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant :-)

→ Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values :-))
Computation of the sets $\mathcal{L}^*[u]$:

1. Collecting constraints:

 $\mathcal{L}_{[\text{stop}]} \supseteq X$
 $\mathcal{L}_{[u]} \supseteq \llbracket k \rrbracket^2 (\mathcal{L}_{[v]})$
 $k = (u, \ldots, v)$ edge

2. Solving the constraint system by means of RR iteration.

 Since \mathcal{L} is finite, the iteration will terminate :-)

3. If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[k]^2$ are distributive :-))

Caveat: The information is propagated backwards !!!!

Example:

Example:
The left-hand side of no assignment is dead :-)

Caveat:
Removal of assignments to dead variables may kill further variables:

```
1  x = y + 1;
2  z = 2 * x;
3  M[R] = y;
4  
```

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

- \(x \) is called truly live at \(u \) along a path \(\pi \) (relative to \(X \)), either
 - if \(x \in X \), \(\pi \) does not contain a definition of \(x \); or
 - if \(\pi \) can be decomposed into \(\pi = \pi_1 k \pi_2 \) such that:
 - \(k \) is a true use of \(x \) relative to \(\pi_2 \);
 - \(\pi_1 \) does not contain any definition of \(x \).
The set of truely used variables at an edge \(k = (_, \text{lab}, v) \) is defined as:

<table>
<thead>
<tr>
<th>lab</th>
<th>truely used</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>Pos ((e))</td>
<td>(\text{Vars}(e))</td>
</tr>
<tr>
<td>Neg ((e))</td>
<td>(\text{Vars}(e))</td>
</tr>
<tr>
<td>(x = e;)</td>
<td>(\text{Vars}(e))</td>
</tr>
<tr>
<td>(x = M[e];)</td>
<td>(\text{Vars}(e))</td>
</tr>
<tr>
<td>(M[e_1] = e_2;)</td>
<td>(\text{Vars}(e_1) \cup \text{Vars}(e_2))</td>
</tr>
</tbody>
</table>

(*) given that \(x \) is truely live at \(v \) w.r.t. \(\pi_2 \): ☐

Example:

\[
\begin{align*}
1 & : x = y + 1; \\
2 & : z = 2 * x; \\
3 & : M[R] = y; \\
4 & : \emptyset
\end{align*}
\]
Example:

1. y, R
2. $x = y + 1$
3. y, R
4. $z = 2 \times x$

Example:

1. y, R
2. $z = y + 1$
3. y, R
4. $M[R] = y$

The Effects of Edges:

\[
\begin{align*}
\llbracket \cdot \rrbracket^L L &= L \\
\llbracket \text{Pos}(e) \rrbracket^L L &= [\text{Neg}(e)]^L L = L \cup \text{Vars}(e) \\
\llbracket x = c \rrbracket^L L &= (L \setminus \{x\}) \cup \text{Vars}(c) \\
\llbracket x = M[e] \rrbracket^L L &= (L \setminus \{x\}) \cup \text{Vars}(c) \\
\llbracket M[e_1] = c_2 \rrbracket^L L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
Note:

- The effects of edges for truly live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

Note:

- The effects of edges for truly live variables are more complicated than for live variables :-)
- Nonetheless, they are distributive !!

To see this, consider for \(\mathcal{D} = 2^U \), \(f \ y = \{ u \in y \} \ ? \ b : \emptyset \). We verify:

\[
\begin{align*}
\quad f(y_1 \cup y_2) &= \{ u \in y_1 \cup y_2 \} \ ? \ b : \emptyset \\
&= \{ u \in y_1 \cup v \in y_2 \} \ ? \ b : \emptyset \\
&= \{ u \in y_1 \} \ ? \ b : \emptyset \cup \{ v \in y_2 \} \ ? \ b : \emptyset \\
&= f(y_1) \cup f(y_2)
\end{align*}
\]

\[\Rightarrow \text{the constraint system yields the MOP} \quad \Rightarrow \]

Note:

- True liveness detects more superfluous assignments than repeated liveness !!!