1 Removing superfluous computations

1.1 Repeated computations

Idea:

If the same value is computed repeatedly, then

→ store it after the first computation;
→ replace every further computation through a look-up!

⇒⇒⇒ Availability of expressions
⇒⇒⇒ Memoization

Problem: Identify repeated computations!

Example:

\[
\begin{align*}
 z &= 1; \\
 y &= M[17]; \\
 A: \quad x_1 &= y + z; \\
 \vdots \\
 B: \quad x_2 &= y + z;
\end{align*}
\]

Note:

B is a repeated computation of the value of \(y + z \), if:

(1) \(A \) is always executed before \(B \); and

(2) \(y \) and \(z \) at \(B \) have the same values as at \(A \) \(\Rightarrow\)

⇒⇒⇒ We need:

→ an operational semantics \(\Rightarrow\)
→ a method which identifies at least some repeated computations ...
Note:

B is a repeated computation of the value of $[y + z]$, if:
(1) A is always executed before B; and
(2) y and z at B have the same values as at A.

We need:

\rightarrow an operational semantics

\rightarrow a method which identifies at least some repeated computations ...
\[\times = M \cdot \nabla \]

Computations follow paths.

Computations transform the current state

\[s = (\rho, \mu) \]

where:

| \(\rho : \text{Vars} \to \text{int} \) | contents of registers |
| \(\mu : \text{Mem} \to \text{int} \) | contents of storage |

Every edge \(k = (u, lab, v) \) defines a partial transformation

\[[k] = [lab] \]

of the state:

\[
\begin{align*}
[\cdot] (\rho, \mu) &= (\rho, \mu) \\
[\text{Pos} (e)] (\rho, \mu) &= (\rho, \mu) & \text{if } [e] \rho \neq 0 \\
[\text{Neg} (e)] (\rho, \mu) &= (\rho, \mu) & \text{if } [e] \rho = 0 \\
\end{align*}
\]

// [e] : evaluation of the expression \(e \), e.g.
// \([x + y] \{ x \mapsto 7, y \mapsto 1 \} = 6 \)
// \([x \cdot 4] \{ x \mapsto 4 \} = 1 \)

\[
[\nabla] (\rho, \mu) = (\rho, \mu)
\]

\[
\begin{align*}
[\text{Pos} (e)] (\rho, \mu) &= (\rho, \mu) & \text{if } [e] \rho \neq 0 \\
[\text{Neg} (e)] (\rho, \mu) &= (\rho, \mu) & \text{if } [e] \rho = 0 \\
\end{align*}
\]

// [e] : evaluation of the expression \(e \), e.g.
// \([x + y] \{ x \mapsto 7, y \mapsto 1 \} = 6 \)
// \([x \cdot 4] \{ x \mapsto 4 \} = 1 \)

\[
[R = e;] (\rho, \mu) = (\rho \oplus \{ R \mapsto [e] \rho \}, \mu)
\]

// where “\(\oplus \)” modifies a mapping at a given argument
\[

\xi \times \nabla \text{ } \mu \text{ } \nabla \rightarrow \xi \oplus \mu \nabla \rightarrow \xi \nabla \mu
\]
\[[\text{Pos}(e)](\rho, \mu) = (\rho, \mu) \quad \text{if} \ [e] \rho \neq 0 \]
\[[\text{Neg}(e)](\rho, \mu) = (\rho, \mu) \quad \text{if} \ [e] \rho = 0 \]

// \ [e] : evaluation of the expression \(e\), e.g.

// \([x + y] \{x \mapsto 7, y \mapsto -1\} = 6\]
// \([!(x == 4)] \{x \mapsto 5\} = 1\]

\[[R = e;] (\rho, \mu) = (\rho \oplus \{R \mapsto \mu([e] \rho)\}, \mu) \]

\[[M[e_1] = e_2;] (\rho, \mu) = (\rho, [\mu \oplus \{e_1 \rho \mapsto [e_2] \rho\}] \]

Example:

\([x = x + 1;] (\{x \mapsto 5\}, \mu) = (\rho, \mu) \quad \text{where:}\]
\[\rho = \{x \mapsto 5\} \oplus \{x \mapsto [x + 1] \{x \mapsto 5\}\} \]
\[= \{x \mapsto 5\} \oplus \{x \mapsto 6\} \]
\[= \{x \mapsto 6\} \]

\[[R = M[e];] (\rho, \mu) = (\rho \oplus \{R \mapsto \mu([e] \rho)\}, \mu) \]

\[[M[e_1] = e_2;] (\rho, \mu) = (\rho, [\mu \oplus \{e_1 \rho \mapsto [e_2] \rho\}] \]

Example:

\([x = x + 1;] (\{x \mapsto 5\}, \mu) = (\rho, \mu) \quad \text{where:}\]
\[\rho = \{x \mapsto 5\} \oplus \{x \mapsto [x + 1] \{x \mapsto 5\}\} \]
\[= \{x \mapsto 5\} \oplus \{x \mapsto 6\} \]
\[= \{x \mapsto 6\} \]
A path \(\pi = k_1k_2 \ldots k_m \) is a computation for the state \(s \) if:
\[
s \in \text{def} \ (\[k_m\] \circ \ldots \circ \[k_1\])
\]
The result of the computation is:
\[
\llbracket \pi \rrbracket s = (\[k_m\] \circ \ldots \circ \[k_1\]) s
\]

Application:

Assume that we have computed the value of \(x + y \) at program point \(u \):

\[
\begin{array}{c}
x+y \\
0 \rightarrow \pi \rightarrow 1
\end{array}
\]

We perform a computation along path \(\pi \) and reach \(v \) where we evaluate again \(x + y \) ...

Idea:

If \(x \) and \(y \) have not been modified in \(\pi \), then evaluation of \(x + y \) at \(v \) must return the same value as evaluation at \(u \) :-)

We can check this property at every edge in \(\pi \) :-)

More generally:

Assume that the values of the expressions \(A = \{e_1, \ldots, e_r\} \) are available at \(u \).

A path \(\pi = k_1k_2 \ldots k_m \) is a computation for the state \(s \) if:
\[
s \in \text{def} \ (\[k_m\] \circ \ldots \circ \[k_1\])
\]
The result of the computation is:
\[
\llbracket \pi \rrbracket s = (\[k_m\] \circ \ldots \circ \[k_1\]) s
\]

Application:

Assume that we have computed the value of \(x + y \) at program point \(u \):

\[
\begin{array}{c}
A \\
0 \rightarrow \pi \rightarrow 1
\end{array}
\]

We perform a computation along path \(\pi \) and reach \(v \) where we evaluate again \(x + y \) ...
Idea:
If \(x \) and \(y \) have not been modified in \(\pi \), then evaluation of \(x + y \) at \(v \) must return the same value as evaluation at \(u \). We can check this property at every edge in \(\pi \).

More generally:
Assume that the values of the expressions \(A = \{ e_1, \ldots, e_r \} \) are available at \(u \).
Every edge \(k \) transforms this set into a set \([k]^f \cdot A \) of expressions whose values are available after execution of \(k \). ... which transformations can be composed to the effect of a path \(\pi = k_1 \ldots k_r \):

\[
[\pi]^f = [k_r]^f \circ \ldots \circ [k_1]^f
\]

The effect \([k]^f \) of an edge \(k = (u, lab, v) \) only depends on the label \(lab \), i.e., \([k]^f = [lab]^f \).

... which transformations can be composed to the effect of a path \(\pi = k_1 \ldots k_r \):

\[
[\pi]^f = [k_r]^f \circ \ldots \circ [k_1]^f
\]

The effect \([k]^f \) of an edge \(k = (u, lab, v) \) only depends on the label \(lab \), i.e., \([k]^f = [lab]^f \) where:

\[
[\emptyset]^f \cdot A = A
\]
\[
[\text{Neg}(c)]^f \cdot A = A \cup \{ c \}
\]
\[
[x = c]^f \cdot A = (A \cup \{ c \}) \setminus \text{Expr}_e
\]

\[\chi = \chi + 1 \]
\[[x = M[e];] A = (A \cup \{ e \}) \setminus \text{Expr}_x \]
\[[M[e_1] = e_2] A = (A \cup \{ e_1, e_2 \}) \setminus \text{Expr}_x \]
\[x = \underbrace{M[e_1]} \]
\[y = \underbrace{\gamma + 1} \]
\[\underbrace{M[y - n]} = S \]

By that, every path can be analyzed.
A given program may admit several paths.
For any given input, another path may be chosen.

\[[x = M[e];] A = (A \cup \{ e \}) \setminus \text{Expr}_x \]
\[[M[e_1] = e_2] A = A \cup \{ e_1, e_2 \} \]

Concretely:

\[\rightarrow \text{ We consider all paths } \pi \text{ which reach } v. \]
\[\rightarrow \text{ For every path } \pi, \text{ we determine the set of expressions which are available along } \pi. \]
\[\rightarrow \text{ Initially at program start, nothing is available } \rightarrow \]
\[\rightarrow \text{ We compute the intersection } \implies \text{ safe information} \]
\[\{ x = M[e]; \}^A A = (A \cup \{ e \}) \setminus \text{Expr}_x \]
\[\{ M[e] = e_i \}^A A = A \cup \{ e_1, e_2 \} \]

By that, every path can be analyzed
A given program may admit several paths
For any given input, another path may be chosen

\[\Rightarrow \text{ We require the set:} \]
\[A[e] = \bigcap \{ \{ \pi \}^A | \pi : \text{start} \rightarrow^* e \} \]

Transformation 1.1:

We provide novel registers T_e as storage for the e:

Concretely:

\[\Rightarrow \text{ We consider all paths } \pi \text{ which reach } e. \]
\[\Rightarrow \text{ For every path } \pi, \text{ we determine the set of expressions which are available along } \pi. \]
\[\Rightarrow \text{ Initially at program start, nothing is available } \Rightarrow \]
\[\Rightarrow \text{ We compute the intersection } \Rightarrow \text{ safe information} \]

How do we exploit this information ???

Transformation 1.1:

We provide novel registers T_e as storage for the e:
... analogously for $R = M[e]$; and $M[e_1] = e_2$.

Transformation 1.2:

If e is available at program point u, then e need not be re-evaluated:

We replace the assignment with $Nop :-)$