Problem:

→ The solution can be computed with RR-iteration — after about 42 rounds.
→ On some programs, iteration may never terminate.

Idea 1: Widening

- Accelerate the iteration — at the prize of imprecision.
- Allow only a bounded number of modifications of values.
 ... in the Example:
- dis-allow updates of interval bounds in \(\mathbb{Z} \).
 a maximal chain:
 \[[3, \mathit{17}] \subset [3, +\infty] \subset [-\infty, +\infty] \]

Formalization of the Approach:

Let \(x_i \equiv f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \) denote a system of constraints over \(\mathbb{D} \) where the \(f_i \) are not necessarily monotonic.

Nonetheless, an accumulating iteration can be defined. Consider the system of equations:

\[x_i = x_i \cup f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \]

We obviously have:

(a) \(\bar{x} \) is a solution of (1) iff \(\bar{x} \) is a solution of (2).

(b) The function \(G : \mathbb{D}^n \rightarrow \mathbb{D}^n \) with

\[G(x_1, \ldots, x_n) = (y_1, \ldots, y_n), \quad y_i = x_i \cup f_i(x_1, \ldots, x_n) \]

is increasing, i.e., \(\bar{x} \sqsubseteq G\bar{x} \) for all \(\bar{x} \in \mathbb{D}^n \).
The sequence $G^k \perp$, $k \geq 0$, is an ascending chain:
\[\perp \subseteq G \perp \subseteq \ldots \subseteq G^k \perp \subseteq \ldots \]

If $G^k \perp = G^{k+1} \perp = y$, then y is a solution of (1).

If D has infinite strictly ascending chains, then (d) is not yet sufficient ...

but: we could consider the modified system of equations:
\[x_i = x_i \cup f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \]

for a binary operation widening:
\[\cup : D^2 \to D \quad \text{with} \quad v_1 \cup v_2 \subseteq v_1 \cup v_2 \]

(RR)-iteration for (3) still will compute a solution of (1) \(\Box \)

Formalization of the Approach:

Let $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$ (1)

denote a system of constraints over D where the f_i are not necessarily monotonic.

Nonetheless, an accumulating iteration can be defined. Consider the system of equations:
\[x_i = x_i \cup f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \]

We obviously have:

(a) x is a solution of (1) iff x is a solution of (2).

(b) The function $G : D^n \to D^n$ with $G(x_1, \ldots, x_n) = (y_1, \ldots, y_n), \quad y_i = x_i \cup f_i(x_1, \ldots, x_n)$
is increasing, i.e., $x \supseteq y \Rightarrow x \supseteq y$ for all $x, y \in D^n$.

... for Interval Analysis:

- The complete lattice is: $D_i = (\text{Vars} \to \mathbb{I})_{\perp}$
- the widening \cup is defined by:
\[\perp \cup D = D \quad \text{and for} \quad D_1 \neq \perp \neq D_2: \]
\[(D_1 \cup D_2) x = (D_1 x) \cup (D_2 x) \]

where
\[[l_1, u_1] \cup [l_2, u_2] = [l, u] \]

with
\[l = \begin{cases} l_1 & \text{if } l_1 \leq l_2 \\ -\infty & \text{otherwise} \end{cases} \]

\[u = \begin{cases} u_1 & \text{if } u_1 \geq u_2 \\ +\infty & \text{otherwise} \end{cases} \]

\[\Rightarrow \quad \cup \quad \text{is not commutative} \Box \]

\[\Rightarrow \quad \cup \quad \text{is not commutative} \Box \]
Example:

\[
[0, 2] \cup [1, 2] = [0, 2] \\
[1, 2] \cup [0, 2] = [-\infty, 2] \\
[1, 5] \cup [3, 7] = [1, +\infty]
\]

→ Widening returns larger values more quickly.
→ It should be constructed in such a way that termination of iteration is guaranteed :-) → For interval analysis, widening bounds the number of iterations by:

\[\#points \cdot (1 + 2 \cdot \#Vars)\]

Conclusion:

→ In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3) :-)
→ Caveat: The construction of suitable widenings is a dark art!!! Often \(\cup \) is chosen dynamically during iteration such that

→ the abstract values do not get too complicated;
→ the number of updates remains bounded …

Our Example:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg((i < 42))</td>
<td>Pos((i < 42))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg((0 \leq i < 42))</td>
<td>Pos((0 \leq i < 42))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_i = A + i)</td>
<td>(M[A_i] = i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i = i + 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(l)</th>
<th>(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-(\infty)</td>
<td>+(\infty)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>(\bot)</td>
<td>(\bot)</td>
</tr>
</tbody>
</table>

Our Example:

\([1, \infty] \cup [1, \infty]\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l)</td>
<td>(\infty)</td>
<td>+(\infty)</td>
<td>+(\infty)</td>
</tr>
<tr>
<td>(u)</td>
<td>0</td>
<td>0</td>
<td>+(\infty)</td>
</tr>
<tr>
<td>(l)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(u)</td>
<td>0</td>
<td>0</td>
<td>+(\infty)</td>
</tr>
<tr>
<td>(l)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(u)</td>
<td>0</td>
<td>0</td>
<td>+(\infty)</td>
</tr>
<tr>
<td>(l)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(u)</td>
<td>(\bot)</td>
<td>42</td>
<td>+(\infty)</td>
</tr>
<tr>
<td>(l)</td>
<td>(\bot)</td>
<td>42</td>
<td>+(\infty)</td>
</tr>
<tr>
<td>(u)</td>
<td>(\bot)</td>
<td>42</td>
<td>+(\infty)</td>
</tr>
</tbody>
</table>
... obviously, the result is disappointing

Idea 2:
In fact, acceleration with \square need only be applied at sufficiently many places!

A set I is a loop separator, if every loop contains at least one point from I :-(

If we apply widening only at program points from such a set I, then RR-iteration still terminates !!!

In our Example:

$I_1 = \{1\}$ or:

$I_2 = \{2\}$ or:

$I_3 = \{3\}$

The Analysis with $I = \{1\}$:

The Analysis with $I = \{2\}$:

\[\{0, \bar{0}\} \subseteq [A, \bar{A}] \subseteq \{0, \bar{0}\} \]
Discussion:

- Both runs of the analysis determine interesting information :-)
- The run with $I = \{2\}$ proves that always $i = 42$ after leaving the loop.
- Only the run with $I = \{1\}$ finds, however, that the outer check makes the inner check superfluous :-(

How can we find a suitable loop separator I ???

The Analysis with $I = \{2\}$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>n</td>
<td>l</td>
<td>n</td>
<td>l</td>
</tr>
<tr>
<td>0</td>
<td>$-\infty$</td>
<td>$+\infty$</td>
<td>$-\infty$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>\perp</td>
<td>42</td>
<td>$+\infty$</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>\perp</td>
<td>\perp</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

Idea 3: Narrowing

Let x denote any solution of (1), i.e.,

$$x_i \supseteq f_i x,$$

$i = 1, \ldots, n$

Then for monotonic f_i,

$$x \supseteq F x \supseteq F^2 x \supseteq \ldots \supseteq F^k x \supseteq \ldots$$

// Narrowing Iteration

Every tuple $F^k x$ is a solution of (1) :-)

Termination is no problem anymore:
we stop whenever we want :-)!

// The same also holds for RR-Iteration.
Narrowing Iteration in the Example:

\[\begin{array}{c|c|c}
0 & 1 & 2 \\
\hline
l & u & l & u & l & u \\
\hline
0 & -\infty & +\infty & -\infty & +\infty & -\infty & +\infty \\
1 & 0 & +\infty & 0 & +\infty & 0 & 42 \\
2 & 0 & +\infty & 0 & 41 & 0 & 41 \\
3 & 5 & +\infty & 0 & 41 & 0 & 41 \\
4 & 0 & +\infty & 0 & 41 & 0 & 41 \\
5 & 0 & +\infty & 0 & 41 & 0 & 41 \\
6 & 1 & +\infty & 1 & 42 & 1 & 42 \\
7 & 42 & +\infty & 1 & 42 & 1 & 42 \\
8 & 42 & +\infty & 42 & +\infty & 42 & 42 \\
\end{array} \]

Discussion:

\[[0, \delta] \subseteq [1, \eta_2] = (0, \eta_2] \]

We start with a safe approximation.

We find that the inner check is redundant.

We find that at exit from the loop, always \(i = 42 \) :-)

It was not necessary to construct an optimal loop separator :-)

Last Question:

Do we have to accept that narrowing may not terminate???
4. Idea: Accelerated Narrowing

Assume that we have a solution \(\vec{x} = (x_1, \ldots, x_n) \) of the system of constraints:
\[
x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n
\]
(1)

Then consider the system of equations:
\[
x_i = x_i \cap f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n
\]
(4)

Obviously, we have for monotonic \(f_i \): \(H^k \vec{x} = F^k \vec{x} \implies \)
where \(H(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \), \(y_i = x_i \cap f_i(x_1, \ldots, x_n) \).

In (4), we replace \(\cap \) by the novel operator \(\bowtie \) where:
\[
a_1 \bowtie a_2 \subseteq a_1 \cap a_2 \subseteq a_1
\]

... for Interval Analysis:

We preserve finite interval bounds \(\vdash \)

Therefore, \(\bot \bowtie D = D \bowtie \bot = \bot \) and for \(D_1 \neq \bot \neq D_2 \):
\[
(D_1 \bowtie D_2) \bowtie x = (D_1 \bowtie x) \cap (D_2 \bowtie x)
\]
where
\[
[l_1, u_1] \cap [l_2, u_2] = [l, u]
\]
\[
l = \begin{cases}
 l_2 & \text{if } l_1 = -\infty \\
 l_1 & \text{otherwise}
\end{cases}
\]
\[
u = \begin{cases}
 u_2 & \text{if } u_1 = \infty \\
 u_1 & \text{otherwise}
\end{cases}
\]

\(\Rightarrow \) \(\bowtie \) is not commutative \(\vdash \)
... for Interval Analysis:

We preserve finite interval bounds :-(

Therefore, \(\bot \sqcap D = D \sqcap \bot = \bot \) and for \(D_1 \neq \bot \neq D_2 \):

\[
(D_1 \sqcap D_2) x = (D_1 x) \sqcap (D_2 x)
\]

where

\[
[l_1, u_1] \cap [l_2, u_2] = [l, u] \quad \text{with}
\]

\[
\begin{align*}
 l &= \begin{cases}
 l_2 & \text{if } l_1 = -\infty \\
 l_1 & \text{otherwise}
 \end{cases} \\
 u &= \begin{cases}
 u_2 & \text{if } u_1 = \infty \\
 u_1 & \text{otherwise}
 \end{cases}
\end{align*}
\]

\[\implies \sqcap \text{ is not commutative !!!}\]

Discussion:

\[\rightarrow\] Caveat: Widening also returns for non-monotonic \(f_i \) a solution

\[\rightarrow\] Narrowing is only applicable to monotonic \(f_i \)

\[\rightarrow\] In the example, accelerated narrowing already returns the optimal result :-(

\[\rightarrow\] If the operator \(\sqcap \) only allows for finitely many improvements of values, we may execute narrowing until stabilization.

\[\rightarrow\] In case of interval analysis these are at most:

\[\#points \cdot (1 + 2 \cdot \#Vars)\]

1.6 Pointer Analysis

Questions:

\[\rightarrow\] Are two addresses possibly equal?

\[\rightarrow\] Are two addresses definitively equal?
1.6 Pointer Analysis

Questions:

→ Are two addresses possibly equal? May Alias
→ Are two addresses definitively equal? Must Alias

⇒⇒⇒ Alias Analysis

The analyses so far without alias information:

(1) Available Expressions:

 • Extend the set Expr of expressions by occurring loads M[e].

 • Extend the Effects of Edges:
 \[
 [x = e]^E A = (A \cup \{ e \}) \setminus Expr
 \]
 \[
 [x = M[e];] A = (A \cup \{ e, M[e] \}) \setminus Expr
 \]
 \[
 [M[e_1] = e_2]^E A = (A \cup \{ e_1, e_2 \}) \setminus Loads
 \]

(2) Values of Variables:

 • Extend the set Expr of expressions by occurring loads M[e].

 • Extend the Effects of Edges:
 \[
 [x = M[e];] V e' = \begin{cases}
 \{ x \} & \text{if } e' = M[e] \\
 \emptyset & \text{if } e' = e \\
 V e' \setminus \{ x \} & \text{otherwise}
 \end{cases}
 \]
 \[
 [M[e_1] = e_2] V e' = \begin{cases}
 \emptyset & \text{if } e' \notin \{ e_1, e_2 \} \\
 V e' & \text{otherwise}
 \end{cases}
 \]

(3) Constant Propagation:

 • Extend the abstract state by an abstract store M

 • Execute accesses to known memory locations!
 \[
 [x = M[e];] (D, M) = \begin{cases}
 (D \oplus \{ x \mapsto M a \}, M) & \text{if } [e]^E D = a \sqsubseteq \top \\
 (D \oplus \{ x \mapsto \top \}, M) & \text{otherwise}
 \end{cases}
 \]
 \[
 (D, M \oplus \{ a \mapsto [e_2]^E D \}) & \text{if } [e_1]^E D = a \sqsubseteq \top
 \]

\[\top a = \top \quad (a \in \mathbb{N})\]
(3) Constant Propagation:

- Extend the abstract state by an abstract store M

- Execute accesses to known memory locations!

\[
[x = M[e_1]]^*(D, M) = \begin{cases}
(D \oplus \{x \mapsto M\ a\}, M) & \text{if} \ [e_1]^* D = a \sqsubseteq \top \\
(D \oplus \{x \mapsto \top\}, M) & \text{otherwise}
\end{cases}
\]

\[
[M[e_1] = e_2]^*(D, M) = \begin{cases}
(D, M \oplus \{a \mapsto [e_2]^* D\}) & \text{if} \ [e_2]^* D = a \sqsubseteq \top \\
(D, \top) & \text{otherwise}
\end{cases}
\]

\[
\bot a = \top \quad (a \in \mathbb{N})
\]