Summary and Application:

→ The effects of edges of the analysis of availability of expressions are distributive:

\[(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b \]
\[= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)\]

→ If all effects of edges are distributive, then the MOP can be computed by means of the constraint system and RR-iteration. :-)

→ If not all effects of edges are distributive, then RR-iteration for the constraint system at least returns a safe upper bound to the MOP.

→ The effects of edges of the analysis of availability of expressions are distributive:

\[(a \cup (x_1 \cap x_2)) \setminus b = ((a \cup x_1) \cap (a \cup x_2)) \setminus b \]
\[= ((a \cup x_1) \setminus b) \cap ((a \cup x_2) \setminus b)\]
1.2 Removing Assignments to Dead Variables

Example:

1: \(x = y + 2 \);
2: \(y = 5 \);
3: \(x = y + 3 \);

The value of \(x \) at program points 1, 2 is over-written before it can be used. Therefore, we call the variable \(x \) dead at these program points \(:-\)

Note:

\(\rightarrow \) Assignments to dead variables can be removed \(:-\)
\(\rightarrow \) Such inefficiencies may originate from other transformations.

Formal Definition:

The variable \(x \) is called live at \(u \) along the path \(\pi \) starting at \(u \) relative to a set \(X \) of variables either:

if \(x \in X \) and \(\pi \) does not contain a definition of \(x \): or:

if \(x \) can be decomposed into: \(\pi = \pi_1 k \pi_2 \) such that:

- \(k \) is a use of \(x \); and
- \(\pi_1 \) does not contain a definition of \(x \).
Thereby, the set of all defined or used variables at an edge \(k = (_, \text{lab}, _ _ \) is defined by:

<table>
<thead>
<tr>
<th>lab</th>
<th>used</th>
<th>defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos (e)</td>
<td>\text{Vars}(c)</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Neg (e)</td>
<td>\text{Vars}(c)</td>
<td>\emptyset</td>
</tr>
<tr>
<td>(x = e;)</td>
<td>\text{Vars}(c)</td>
<td>{x}</td>
</tr>
<tr>
<td>(x = M[e];)</td>
<td>\text{Vars}(c)</td>
<td>{x}</td>
</tr>
<tr>
<td>(M[c_1] = c_2;)</td>
<td>\text{Vars}(c_1) \cup \text{Vars}(c_2)</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

A variable \(x \) which is not live at \(u \) along \(\pi \) (relative to \(X \)) is called **dead** at \(u \) along \(\pi \) (relative to \(X \)).

Example:

\[
\begin{array}{c}
\text{x = y + 2;} \\
y = 5; \\
x = y + 3;
\end{array}
\]

where \(X = \emptyset \). Then we observe:

<table>
<thead>
<tr>
<th></th>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{y}</td>
<td>{x}</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>{x, y}</td>
</tr>
<tr>
<td>2</td>
<td>{y}</td>
<td>{x}</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>{x, y}</td>
</tr>
</tbody>
</table>

The variable \(x \) is **live** at \(u \) (relative to \(X \)) if \(x \) is live at \(u \) along some path to the exit (relative to \(X \)). Otherwise, \(x \) is called **dead** at \(u \) (relative to \(X \)).

Question:

How can the sets of all dead/live variables be computed for every \(u \)?
The variable \(x \) is live at \(u \) (relative to \(X \)) if \(x \) is live at \(u \) along some path to the exit (relative to \(X \)). Otherwise, \(x \) is called dead at \(u \) (relative to \(X \)).

Question:

How can the sets of all dead/live variables be computed for every \(u \)?

Idea:

For every edge \(k = (u, v) \), define a function \([k]^F \) which transforms the set of variables which are live at \(v \) into the set of variables which are live at \(u \).

\[
\begin{align*}
[\]^FL & = L \\
[\operatorname{Pos}(e)]^FL & = [\operatorname{Neg}(e)]^FL = L \cup \operatorname{Vars}(e) \\
[x = c]^FL & = (L \setminus \{x\}) \cup \operatorname{Vars}(c) \\
[x = M[e]]^FL & = (L \setminus \{x\}) \cup \operatorname{Vars}(c) \\
[M[e] = e_2]^FL & = L \cup \operatorname{Vars}(e_1) \cup \operatorname{Vars}(e_2)
\end{align*}
\]

Let \(L = 2^{\operatorname{Vars}} \).

For \(k = (_-, lab, _) \), define \([k]^F = [lab]^F \) by:

\[
\begin{align*}
[\]^FL & = L \\
[\operatorname{Pos}(e)]^FL & = [\operatorname{Neg}(e)]^FL = L \cup \operatorname{Vars}(e) \\
[x = c]^FL & = (L \setminus \{x\}) \cup \operatorname{Vars}(c) \\
[x = M[e]]^FL & = (L \setminus \{x\}) \cup \operatorname{Vars}(c) \\
[M[e] = e_2]^FL & = L \cup \operatorname{Vars}(e_1) \cup \operatorname{Vars}(e_2)
\end{align*}
\]

\([k]^F\) can again be composed to the effects of \([x]^F \) of paths \(\pi = k_1 \ldots k_r \) by:

\[
[x]^F = [k_1]^F \circ \ldots \circ [k_r]^F
\]

We verify that these definitions are meaningful :)
We verify that these definitions are meaningful :)

```
1  2  3  4  5
\{y\}  0  \{x,y\}  \emptyset
```

The set of variables which are live at \(u \) then is given by:

\[
\mathcal{L}^*[u] = \bigcup \{[x] \mid X : u \rightarrow^* \text{stop} \}
\]

... literally:
- The paths start in \(u \) :-)
 \[\Rightarrow\] As partial ordering for \(L \) we use \(\subseteq \subseteq \).
- The set of variables which are live at program exit is given by the set \(X \) :-)

Transformation 2:
```
\begin{align*}
& x = e; \\
& x \notin \mathcal{L}^*[u] \\
& x = M[e]; \\
& x \notin \mathcal{L}^*[u]
\end{align*}
```

\[\leftarrow\]
Correctness Proof:

→ Correctness of the effects of edges: If \(L \) is the set of variables which are live at the exit of the path \(\pi \), then \(\pi^2 L \) is the set of variables which are live at the beginning of \(\pi \) \(\vdash \)

→ Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant \(\vdash \)

→ Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values \(\vdash \)

Transformation 2:

\[x = \phi_i \]

\[x \notin L^*[v] \]

\[x = M[e]; \]

\[x \notin L^*[v] \]

Computation of the sets \(L^*[u] \):

1. Collecting constraints:

\[L[\text{stop}] \supseteq X \]

\[L[u] \supseteq \{ k \} (L[v]) \]

\[k = (u, v) \text{ edge} \]

2. Solving the constraint system by means of RR iteration.

Since \(L \) is finite, the iteration will terminate \(\vdash \)

3. If the exit is (formally) reachable from every program point, then the smallest solution \(L \) of the constraint system equals \(L^* \) since all \(\{ k \} \) are distributive \(\vdash \)
Transformation 2:

1. $x = e;\quad x \notin \mathcal{L}^*[v]$
2. $x = M[e];\quad x \notin \mathcal{L}^*[v]$

We verify that these definitions are meaningful :)

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x \]

Example:

- $L[0] \supseteq (L[1]\{x\}) \cup \{I\}$
- $L[1] \supseteq L[2]\{y\}$
- $L[2] \supseteq (L[3]\{x\}) \cup \{L[4] \cup \{x\}\}$
- $L[3] \supseteq (L[4]\{y\}) \cup \{x\}$
- $L[4] \supseteq L[5]\{x\}$
- $L[5] \supseteq \emptyset$

Example:

\[\begin{array}{c|c|c}
 \text{1} & \text{2} \\
 \hline
 7 & 0 \\
 6 & \{y, R\} \\
 5 & \{x, y, R\} \\
 4 & \{x, y, R\} \\
 3 & \{x, y, R\} \\
 2 & \{x, y, R\} \\
 1 & \{x, R\} \\
 0 & \{I, R\} \\
\end{array} \]
Example:

\[z = M[R]; \]
\[y = 1; \]
\[\text{Neg}(x > 1) \]
\[\text{Pos}(x > 1) \]
\[M[R] = y; \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>6</td>
<td>{y, R}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>5</td>
<td>{x, y, R}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>{x, y, R}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>{x, y, R}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>{x, R}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>0</td>
<td>{I, R}</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Caveat:

The left-hand side of no assignment is \textbf{dead} \ :-)

Removal of assignments to dead variables may kill further variables:

Caveat:

The left-hand side of no assignment is \textbf{dead} \ :-)

Removal of assignments to dead variables may kill further variables:
The left-hand side of no assignment is dead :)

Caveat:

Removal of assignments to dead variables may kill further variables:

\[
\begin{array}{c}
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array}
\end{array}
\begin{array}{c}
y, R \\
x = y + 1; \\
z = 2 * x; \\
M[R] = y; \\
\emptyset \\
\end{array}
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array}
\begin{array}{c}
y, R \\
x = y + 1; \\
y, R \\
M[R] = y; \\
\emptyset \\
\end{array}
\end{array}
\]

Re-analyzing the program is inconvenient :-(

Idea: Analyze true liveness!

\(x \) is called **true** live at \(u \) along a path \(\pi \) (relative to \(X \)), either

if \(x \in X \), \(\pi \) does not contain a definition of \(x \); or

if \(\pi \) can be decomposed into \(\pi = \pi_1 \cdot \pi_2 \) such that:

- \(\pi_1 \) does not contain any definition of \(x \).
- \(x \) is a true use of \(\pi \).

The set of truly used variables at an edge \(k = (u, lab, v) \) is defined as:

<table>
<thead>
<tr>
<th>lab</th>
<th>truly used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(;)</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos((e))</td>
<td>Vars((e))</td>
</tr>
<tr>
<td>Neg((e))</td>
<td>Vars((e))</td>
</tr>
<tr>
<td>(x = e);</td>
<td>Vars((e)) ((*))</td>
</tr>
<tr>
<td>(x = M[e]);</td>
<td>Vars((e)) ((*))</td>
</tr>
<tr>
<td>(M[e_1] = e_2);</td>
<td>Vars((e_1)) \cup Vars((e_2))</td>
</tr>
</tbody>
</table>

(\(* \)) - given that \(x \) is truly live \(\Rightarrow \)

The set of truly used variables at an edge \(k = (u, lab, v) \) is defined as:

<table>
<thead>
<tr>
<th>lab</th>
<th>truly used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(;)</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos((e))</td>
<td>Vars((e))</td>
</tr>
<tr>
<td>Neg((e))</td>
<td>Vars((e))</td>
</tr>
<tr>
<td>(x = e);</td>
<td>Vars((e)) ((*))</td>
</tr>
<tr>
<td>(x = M[e]);</td>
<td>Vars((e)) ((*))</td>
</tr>
<tr>
<td>(M[e_1] = e_2);</td>
<td>Vars((e_1)) \cup Vars((e_2))</td>
</tr>
</tbody>
</table>

(\(* \)) - given that \(x \) is truly live \(\Rightarrow \)
Example:

1. \(x = y + 1; \)
2. \(z = 2 \times x; \)
3. \(y, R \)
4. \(M[R] = y; \)
5. \(\emptyset \)

Example:

1. \(x = y + 1; \)
2. \(y, R \)
3. \(z = 2 \times x; \)
4. \(y, R \)
5. \(M[R] = y; \)
6. \(\emptyset \)
The Effects of Edges:

$$[\exists e] L = L$$
$$[\text{Pos}(e)] L = [\text{Neg}(e)] L = L \cup \text{Vars}(e)$$
$$[x = e] L = (L \setminus \{x\}) \cup \text{Vars}(e)$$
$$[x = M[e]] L = (L \setminus \{x\}) \cup \text{Vars}(e)$$
$$[M[e_1] = e_2] L = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)$$

Example:

```
1 y, R
  x = y + 1;
2 y, R
  z = 2 * x;
3 y, R
  M[R] = y;
4

1 y, R
  ;
2 y, R
  ;
3 y, R
  M[R] = y;
4
```

The Effects of Edges:

$$[\exists e] L = L$$
$$[\text{Pos}(e)] L = [\text{Neg}(e)] L = L \cup \text{Vars}(e)$$
$$[x = e] L = (L \setminus \{x\}) \cup (x \in L) \text{? Vars}(e) : \emptyset$$
$$[x = M[e]] L = (L \setminus \{x\}) \cup (x \in L) \text{? Vars}(e) : \emptyset$$
$$[M[e_1] = e_2] L = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)$$
Note:

- The effects of edges for truly live variables are more complicated than for live variables.
- Nonetheless, they are distributive!!

The Effects of Edges:

\[
\begin{align*}
&[\cdot]^2 L = L \\
&[\text{Pos}(e)]^2 L = [\text{Neg}(e)]^2 L = L \cup \text{Vars}(e) \\
&[x = e]^2 L = (L \setminus \{x\}) \cup (x \in L) \land \text{Vars}(e) : \emptyset \\
&[x = M[e]^2] L = (L \setminus \{x\}) \cup (x \in L) \land \text{Vars}(e) : \emptyset \\
&[M[e_1] = e_2]^2 L = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]

Note:

- The effects of edges for truly live variables are more complicated than for live variables.
- Nonetheless, they are distributive!!

To see this, consider for \(D = 2^U \). \(f \) \(y = (u \in y) ? b : \emptyset \) We verify:

\[
\begin{align*}
&f (y_1 \cup y_2) = (u \in y_1 \cup y_2) ? b : \emptyset \\
&= (u \in y_1 \lor u \in y_2) ? b : \emptyset \\
&= (u \in y_1) ? b : \emptyset \lor (u \in y_2) ? b : \emptyset \\
&= f y_1 \lor f y_2
\end{align*}
\]
Note:

- The effects of edges for truly live variables are more complicated than for live variables :)
- Nonetheless, they are distributive !!

To see this, consider for $D = 2^U$. $f \cdot y = (u \in y) ? b : \emptyset$ We verify:

$$f (y_1 \cup y_2) = (u \in y_1 \cup y_2) ? b : \emptyset$$
$$= (u \in y_1 \lor u \in y_2) ? b : \emptyset$$
$$= (u \in y_1) ? b : \emptyset \lor (u \in y_2) ? b : \emptyset$$
$$= f y_1 \lor f y_2$$

\implies the constraint system yields the MOP :-))

Note:

- True liveness detects more superfluous assignments than repeated liveness !!!!
1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless :-(

Example:

This variable-variable assignment is obviously useless :-(
Instead of \(y \), we could also store \(T \) :-(

True liveness detects more superfluous assignments than repeated liveness !!!

\[x = x - 1; \]
1.3 Removing Superfluous Moves

Example:

```
1  T = x + 1;
2  y = T;
3  M[R] = y;

1  T = x + 1;
2  y = T;
3  M[R] = T;

1  T = x + 1;
2  y = T;
3  M[R] = T;
```

Advantage: Now, y has become dead :-))

Idea:

For each expression, we record the variable which currently contains its value :-)

We use: $\mathcal{V} = \text{Expr} \rightarrow 2^{\text{Vars}}$...

```
[x = c]\mathcal{V} e' = \begin{cases} 
(V \cup \{x\}) & \text{if } e' = c \\
(V \setminus \{x\}) & \text{otherwise}
\end{cases}

[x = y]\mathcal{V} e' = \begin{cases} 
(V \cup \{x\}) & \text{if } y \in V e \\
(V \setminus \{x\}) & \text{otherwise}
\end{cases}

[x = e]\mathcal{V} e' = \begin{cases} 
\{x\} & \text{if } e' = e \\
(V \setminus \{x\}) & \text{otherwise}
\end{cases}

[x = M[e];]\mathcal{V} e' = (V \setminus \{x\})

[x = M[y];]\mathcal{V} e' = (V \setminus \{x\})

[x = M[e];]\mathcal{V} e' = \begin{cases} 
\emptyset & \text{if } e' = e \\
(V \setminus \{x\}) & \text{otherwise}
\end{cases}
```

\mathcal{I} analogously for the diverse stores

// for Expr. Not an Id fun variable

\[\mathfrak{f} x\]
\[[x = e]^{e'} = \begin{cases} (V(e) \cup \{x\}) & \text{if } e' = e \\ (V(e') \setminus \{x\}) & \text{otherwise} \end{cases} \]

\[[x = y]^{e'} V e = \begin{cases} (V(e) \cup \{x\}) & \text{if } y \in V e \\ (V(e) \setminus \{x\}) & \text{otherwise} \end{cases} \]

\[[x = e]^{e'} V e' = \begin{cases} \{x\} & \text{if } e' = e \\ (V(e') \setminus \{x\}) & \text{otherwise} \end{cases} \]

\[[x = M[e]]^{e'} V e' = (V(e') \setminus \{x\}) \]

\[[x = M[y]]^{e'} V e' = (V(e') \setminus \{x\}) \]

\[[x = M[e]]^{e'} V e' = \begin{cases} \emptyset & \text{if } e' = e \\ (V(e') \setminus \{x\}) & \text{otherwise} \end{cases} \]

\[\hat{V} e = \begin{cases} V e' & \text{if } e \in \mathbb{E}_{\lambda} \end{cases} \]

\[\hat{V} e = \begin{cases} \emptyset & \text{otherwise} \end{cases} \]

\[\emptyset \]

In the Example:

\[T = x + 1; \]

\[y = T; \]

\[M[R] = y; \]

\[\{x + 1 \mapsto (y, T)\} \]