Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

Script generated by TTT Programming Languages TI-ITI

Dr. Michael Petter WS 2016/17
Exercise Sheet 4

Assignment 4.1 Memory Consistency

Tltle Petter: ProgrammlerspraChen_Uebung 1. Given an execution path for each thread, what property does the hardware (or the
model) have if only a single interleaving is possible?
(18.11.2016)) vasing B

\:‘ strict consistency
Date: Fri Nov 18 08:37:11 CET 2016 g qk“ consistency
weak consistency

6657 m|n 2. What consistency guarantee does a system with a MESI cache but without store or
) invalidate buffers give?

Duration:

\:‘ strict consistency

Pages: 18

enrmantial anncictancy

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe
Assignment 4.1 Memory Consistency \:‘ strict consistency
1. Given an execution path for each thread, what property does the hardware (or the \:‘ sequential consistency |
model) have if only a single interleaving is possible? l/

\:‘ weak consistency

strict consistency 2. What consistency guarantee does a system with a MESI cache but without storc\(
I:‘ sequential consistency invalidate buffers give? \/ _/

L] weak consistency L strict consistency \/

2. What consistency guarantee does a system with a ME ut without store or \:‘ sequential consistency
invalidate buffers give?

—_— CA)C \:‘ weak consistency | |
S}trct (yfd stency 3. A program reaching a state S on weakly consistent hardware can always Teacl thie
sequential consistency same state S on sequentially consistent hardware. D} es Dno
O weak consistency
Assignment 4.2 Semaphores, Locks, and Monitors
3. A program reaching a state S on weakly consistent hardware can always ruachlzt}(g P ’ ’
same state S on sequentially consistent hardware. Dycs o Tick one of the answers in each question. true false

T A comanhare ran ha nead ta imnlament a mntay

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

152,74% v =] Q 152.74% v EEEEEE

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

2. A mutex is always re-entrant.

3. A monitor can be used as a mutex.
4. Any deadlock-free program must acquire locks in a fixed order. \:‘ \:l

5. When acquiring locks in a fixed order to ensure deadlock-freedom, there is no ad-

vantage in releasing them in the opposite order.

6. The use of which concurrency construct may lead to starvation, that is, a thread
that never manages to execute the critical section to completion, given arbitrary
many chances?

\:‘ a wait-free algorithm
a lock-free algorithm
D a lock where blocking threads are put into a queue

D a signal-and-urgent-wait monitor where all waiting threads are tracked in queu-
es

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

152.74% =]

U The program may have a deadlock if a, is a lock and a, € L,,.
\:‘ The program will deadlock if a,, is a lock and a, € L,.
The progfam is free of deadlocks if a, € L, implies that a, Z% monitor.

8. Suppose that a pgogram was shown to be deadlock free using the Iclorder argu-
ment. This approach to dealing with deadlocks is called =

D deadlock detecél%(, 776_9
D deadlock prever}g‘itgn

D deadlock avoidance.

D ignoring dead{(lﬁ:k‘ "B d64D

9. Consider the pro%m P whose sole synchrgnization between its two threads is given
by the following two program fragmen%rjcurding to the definition o ;if.;}ao(&f
/

wait(A); / wait(B); D
¥f (rnd()) { if (rnd()) { <t
wait(B); wait(C); Ad@aé
if (rnd()) { / if (rnd()) {
wait(C); wait(D);

3. A monitor can be used as a mutex. I:‘ D
4. Any deadlock-free program must acquire locks in a fixed order. D D

5. When acquiring locks in a fixed order to ensure deadlock-freedom, there is no ad-
vantage m releasing them in the opposite order.
6. The use of which concurrency construct may lead to starvation, that is, a thread

that never manages to execute the critical section to completion, given arbitrary
many chances?

\:‘ a wait-free algorithm
O 4 tock- e alsorituh
ﬁ; lock where b]ockini threads are put into a queue

\:‘ a signal-
es

S

ait monitor where all waiting threads are tracked in queu-

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

-1 5274% ~ =l

if (rnd()) { if (rnd()) {
wait (B) ; wait(C);
if (rnd()) { if (rnd()) {
wait(C); wait (D) ;
// compute // compute
signal(C) Y
} }
signal(B); signal(B);
} signal(C);
signal(A); signal(D);

\:‘ P may deadlock. There exists a lock ordey@een the locks.

P may deadlock. There exists no lock order between the locks.

\:‘ P cannot deadlock. There exists a lock order between the locks.
\:‘ P cannot deadlock. There exists no lock order between the locks.
10. By recording an interleaving of a program at runtime, we observe the following: A

thread that holds a lock is descheduled and another thread is scheduled that then
executes holding the same lock.

| I -

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

152,74% v =] Q 152.74% v EEEEEE

. 15 u() {
\:‘ P may deadlock. There exists a lock order between the locks. 0 4 . g0 1 .
\:‘ P may deadlock. There exists no lock order between the locks. 2 L. 9 L. i wait(B);
3 it (A); 1 it (A); 1 it(C);
[P cannot deadlock. There exists a lock order between the locks. 3 Walll()(.) H o wa\l}()(.) ; {s wait(C);
\:‘ P cannot deadlock. There exists no lock order between the locks. 5 signal(A); 12 signal(A); 0 signal(C);
¢ L. 13 L. 2 signal(B);
10. By recording an interleaving of a program at runtime, we observe the following: A .} w) N
thread that holds a lock is descheduled and another thread is scheduled that then s}
executes holding the same lock. a v o
25 s
LJ This behavior should never happen since it violates the mutual exclusion pro- 26 wait(C);
perty, so there must be an error in the program. - wait(B);
\:‘ The lock must be a signal-and-urgent-wait monitor. 2 s
29 signal (B);
\:‘ The lock must be a signal-and-continue monitor. w0 signal(C);
31 .
11. The enter operation of a monitor is called notify in Java. 0 o w ¥

1. Additionally, we are given a main function that runs f and g in parallel:

2 3 main() {
Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe
2 v() { 26 wait (C);
25 . 27 wait(B);
26 wait(C); 28 -
27 wait (B); 20 signal(B);
28 L 30 signal(C);
29 signal(B); |:| 31 . |:|
30 signal(C); s}
3 PP .y - . . .
! 3 1. Additionally, we are given a main function that runs £ and g in parallel:
32

33 main() {

31 £O; 11 g0;

1. Additionally, we are given a main function that runs f and g in parallel:

33 main() { 3t
31 £fO; 11 g0;
:(} g Can this possibly cause a deadlock? I% try to prove it using the freedom of

deadlock theorem. o
Can this possibly cause a deadlock? If not, try to prove it using the freedom of

deadlock theorem. 2. Assuming there is no possible deadlock, how can we change the main function in a

simple way to render a deadlock possible?
2. Assuming there is no possible deadlock, how can we change the main function in a

simple way to render a deadlock possible? 3. Finally, we change the main function so that it runs £ and g sequentially:

2 Tinallv wa chanan tha main finetinn ca that it mme £ and @ camrmantialle s main() {

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

152,74% v =] Q 152.74% v EEEEEE

" u(); 11 v(); 19 e 26 wait(C);

s signal(A); 12 signal(A); % signal(C); 27 wait(B);

6 . 13 . 21 signal(B) H 28 - ,

-} uo ¥ 22 ... 20 signal(B); A

= ¥ ,é 30 si ©); AB
2 v { ,
A o TP Rec

26 wait(C); A e} A

2 wait (B); 1. Additionally, we are givﬁ a main function tha¥runs £ and g in par%[é3

28 e -

20 signal(B); 33 main() { q_
a0 signal(C); 34 f(); [l g(); AA +
31 P 35 }

32 }

Can this possibly cause a deadlock? If not,ﬁﬁ%ggw&: it using theAreedom o
1. Additionally, we are given a main function that runs f and g in parallel: deadlock theorem. CA%
4

3 main() { 2. Assuming there is no possible deadlock, how can A élange the mgin fuhdtion in g
a1 £O; 11 gO; simple way to render a deadlock possible? A
35 }

3. Finally, we change the main function so that it runs f and g sequent
Can this possibly cause a deadlock? If not, try to prove it using the freedom of
deadlock theorem 36 main() {

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

15274% v =

v f0O A s g0 o 6 ... a3 main() {
2 9 ait(B); 34 £0O; |1 g();
3 wait(A); 10 wait(C); [E
1 u(); 1 (@) ‘) L (3 i)) . .
. signal(A); o signal(C); 1 Can this possibly cause a deadlock? If not, try to prove it using the freedom of
. o s o signal(B); deadlock theorem.
T uo} B 2. Assuming there is no possible deadlock, how can we change the main function in a
= } simple way to render a deadlock possible?
w vO { simple way to render a deadlock possible?
* t 3. Finally, we change the main function so that it runs f and g sequentially:
26 wait(C);
27 wait(B); 3 main() {
28 e 37 £0O H
29 -s:|.gnal(B) 5 38 g() 5
30 s:l.gnal(C) N 39 }
31 e
2} Obviously, no deadlock can occur (no parallelism and no lock is acquired multiple

times without releasing it in between). Again try to prove this using the freedom of

1. Additionally, we are given a main function that runs £ and g in parallel: deadiock theorem.

33 main() {

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

152,74% v =] Q 152.74% v EEEEEE

26 wait(C); s u() {
27 wait (B); 10 AL s g0 Ao 6 ...
28 2 9 1w wait(B);
20 signal(B); 3 wait (A); 10 wait(A); 18 wait(C);
30 signal(C); 1 u(); 1 v(Q; 19 L.
3 .. 5 signal(A); 12 signal(A); 2 signal(C);
a2} 6 .. 13 .. 2z signal(B);
T } 14 } 22 e
1. Additionally, we are given a main function that runs £ and g in parallel: s}
u v {
33 main() { 25 e
34 £0O; | g(); 26 wait(C);
s} o7 wait(B);
Can this possibly cause a deadlock? If not, try to prove it using the freedom of 2: siéx;..al(B);

deadlock theorem. 30 signal(C);

2. Assuming there is no possible deadlock, how can we change the main function in a 31
simple way to render a deadlock possible? » }

3. Finally, we change the main function so that it runs f and g sequentially: L. Additionally, we are given a main function that runs £ and g in parallel:

36 main() { 33 mainr() {

Datei Bearbeiten Ansicht Gehezu Lesezeichen Hilfe

15274% v =

3 main() {

37 f();
38 g();
TR

Obviously, no deadlock can occur (no parallelism and no lock is acquired multiple
times without releasing it in between). Again try to prove this using the freedom of
deadlock theorem.

