SN TECHNISCHE ~ UNIVERSITAT ~ MUNCHEN
g%gg FAKULTAT FUR INFORMATIK

Script generated by TTT
Programming Languages

Title: Petter: Programmiersprachen (16.11.2016) c T y
oncurrency. lransactions

Date: Wed Nov 16 14:15:30 CET 2016

Duration: 95:50 min

Dr. Michael Petter
Pages: 46 Winter term 2016

Concurrency: Transactions _ 1/36
Abstraction and Concurrency T Abstraction and Concurrency T
Two fundamental concepts to build larger software are: Two fundamental concepts to build larger software are:
: an object storing certain data and providing certain abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals functionality may be used without reference to its internals
: several objects can be combined to a new object without composition : several objects can be combined to a new object without
interference interference

Both, abstraction and composition are closely related, since the ability to
compose depends on the ability to abstract from details.

Abstraction and Concurrency)

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose depends on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as|push()iand|forA11() |
@ a set object may internally use the list object and expose a set of
operations, includin
The insert () operations uses thel forAll() |operation to check if the element
already exists and usesl push () |if not.

Concurrency: Transactions 2/36
Abstraction and Concurrency U

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose depends on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as push () and forA11()
@ a set object may internally use the list object and expose a set of
operations, including push ()
The insert () operations uses the forA11() operation to check if the element
already exists and uses push () if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
~+ wrap the two calls in insert () in a mutex
@ but other list operations can still be called ~~ use the same mutex
~+ unlike sequential algorithms, thread-safe algorithms cannot always be
composed to give new thread-safe algorithms

Concurrency: Transactions

Abstraction and Concurrency T

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose depends on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as push () and forAll ()
@ a set object may internally use the list object and expose a set of
operations, including push O
The insert () operations uses the forAll () operation to check if the element
already exists and uses push () if not.
Wrapping the linked list in a mutex does not help to make the sefthread-safe.
~ wrap the two calls in insert () in a mutex
@ but other list operations can still be called ~~ use the same mutex

Concurrency: Transactions

2156
Transactional Memory [2] U

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retry;
atomic {
// more code
}
// code

Concurrency: Transactions

Transactional Memory [2] [T Managing Conflicts T

ldea: automatically convert atomic blocks into code that ensures atomic

execution of the statements. Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is

atomic { detected when the TM system observes this, it is resolved when the TM
(/ code system takes action (by delaying or aborting a transaction).
if (cond) retry;
atomic { Design choices for transactional memory implementations:
// more code @ optimistic vs. pessimistic concurrency control: |
¥ - detection/resolution when the conflict is about to occur
// code * resolution here is usually delaying one transaction
} * can be implemented using locks: deadlock problem
Execute code as fransaction: » optimistic: detection and remulig_u_n_am_au_aﬂagla conflict occurs
. * resolution here must be|aborting one transaction
@ execute the code of an atomic block * need to repeat aborted transaction: livelock problem
@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread
@ if another thread interferes through conflicting updates:
» undo the computation done so far
» re-start the transaction
@ provide a retry keyword similar to the wait of monitors
Concurrency: Transactions 3/36 Concurrency: Transactions 436

Managing Conflicts T Choices for Optimistic Concurrency Control /L[]

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is .

detected when the TM system observes this, it is resolved when the TM Design choices for TM that allow conflicts to happen:

system takes action (by delaying or aborting a transaction). @ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

@ conflict detection:

» eager: conflicts are detected when memory locations are first accessed

» validation: check occasionally that there is no conflict yet, always validate
when committing

» lazy: conflicts are detected when committing a transaction

© reference of conflict (for non-eager conflict detection)

Design choices for transactional memory implementations:
@ optimistic vs. pessimistic concurrency control:
» pessimistic: detection/resolution when the conflict is about to occur

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» opiimistic: detection and resolution happen after a conflict occurs
* resolution here must be aborting one transaction

* need to repeat aborted transaction: livelock problem » tentative detect conflicts before transactions commit, e.g. aborting when
@ (eager vs. lazy|version management. how read and written data are transaction T reads while 7, may write the same location '
managed during the transaction » committed detect conflicts only against transactions that have committed
> rites modify the memory and an is necessary if the

transaction aborts

-writes are stored in and modifications are done on

committing

Concurrency: Transactions Transaction Semantics 4/36 Concurrency: Transactions Transaction Semantics 5/36

Semantics of Transactions T Semantics of Transactions U]
The goal is to use transactions to specify atomic executions. The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the: AC/D properties: Transactions are rooted in databases where they have the ACI/D properties:
atomicity : a transaction completes or seems not to have run
~ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)
isolation : transactions do not interfere with each other
~ not so evident with respect to non-transactional memory

durability : the effects are permanent v~

Concurrency: Transactions Transaction Semantics 6/36 Concurrency: Transactions Transaction Semantics 6/36

Semantics of Transactions U Consistency During Transactions T
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run
~+ we call this failure atomicity to distinguish it from atomic

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

executions @ a transaction that is run on an inconsistent state may generate an
consistency : each transaction transforms a consistent state to another inconsistent state ~ zombie transaction
consistent state @ this is usually ok since it will be aborted eventually
@ a consistent state is one in which certain invariants hold @ but transactions may cause havoc when run on inconsistent states
atomic { // preserved invariant: x==y

@ invariants depend on the application (e.g. queue data

structure) int tmpl = x; atomic {
, i . . . int tmp2 = y; = 10;
isolation : transactions do not interfere with each other Thb P v N * B
. . . assert(tmpl-tmp2==0); y = 10;
~+ not so evident with respect to non-transactional memory 1 1
durability : the effects are permanent v~ e critical for C/C++ if, for instance, variables are pointers
Transactions themselves must be serializable: Definition (opacity)

@ the result of running concurrent transactions must be identical to one
execution of them in sequence

@ serializability for transactions is insufficient to perform synchronization
between threads ~- failing transactions still sees a consistent view of memory

Concurrency: Transactions Transaction Semantics 6/36 Concurrency: Transactions Transaction Semantics 7136

A TM system provides opacity if failing transactions are serializable w.r.t.
committing fransactions.

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

}

~+ give programs with races the same semantics as if using a single global
lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Transaction Semantics

Concurrency: Transactions

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

}

~+ give programs with races the same semantics as if using a single global
lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a single, program-wide mutual exclusion lock.

i

8/36

i

~ like sequential consistency, SLA is a statement about program equivalence

Transaction Semantics

Concurrency: Transactions

8/36

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Gan we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

// Thread 1

atomic { // Thread 2
x = 42; int tmp = Xx;

¥

~ give programs with races the same semantics as if using a single global
lock for all atomic blocks

@ sirong isolation: retain order between accesses to TM and non-TM

Definition (SLA)

The single-lock atomnicity is a model in which the program executes as if all
transactions acquire a single, program-wide mutual exclusion lock.

T

Transaction Semantics

Concurrency: Transactions

Properties of Single-Lock Atomicity

. = i
%Eomlc { k =1i+j; }

_,_C
7

E A

- e N
=%

R

Xomic 1k =1+3; 7|

Observation:
@ SLA enforces order between TM and non-TM accesses v
» this guarantees sirong isolation between TM and non-TM accesses
@ within one transaction, accesses may be re-ordered v

@ the content of non-TM memory conveys information which atomic block
has executed, even if the TM regions do not access the same memory

» SLA makes it possible to use atomic block for synchronization

Transaction Semantics

Concurrency: Transactions

8/36

9/36

[T Transactional Sequential Consistency T

Disadvantages of the SLA model
How about a more permissive view of transaction semantics?

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have @ TM should not have the blocking behaviour of locks
// Thread 1 // Thread 2 ~+ the programmer cannot rely on synchronization
atomic { atomic {
while (true) {}; int tmp = x; // x in TM Definition (TSC)
¥ ¥ The transactional sequential consistency is a model in which the accesses
within each transaction are sequentially consistent.

@ SLA correctness is too strong in practice
Thread 2
atomic {
// Thread 1
data = 1: int tmp = data;
atomic {, // Thread 1 not in atomic
} if (ready) {
// use tmp
ready = 1;
g }
}

» under the SLA model, atomic {} acis as barrier
» intuitively, the two transactions should be independent rather than

synchronize
~ need a weaker model for more flexible implementation of strong isolation

Concurrency: Transactions 10/ 36 Concurrency: Transactions 11/36
T Transactional Sequential Consistency T

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks
~~ the programmer cannot rely on synchronization

Transactional Sequential Consistency

How about a more permissive view of transaction semantics?
@ TM should not have the blocking behaviour of locks

~+ the programmer cannot rely on synchronization

Definition (TSC)

The transactional sequential consistency is a model in which the accesses

within each transaction are sequentially consistent.

Definition (TSC)
The transactional sequential consistency is a model in which the accesses
within each transaction are sequentially consistent.

atomic_{ k = i+j; }

atomic { k = i+j; }
o 4 y e
‘ ®

&

¢

o

tjd pg-iq:-:b

bd ;R:-M—_s:-u:b-

@ TSC is weaker: gives strong isolation, but allows parallel execution v
@ TSC is stronger: accesses within a transaction may not be re-ordered A
~+ actual implementations use TSC with some race free re-orderings

Concurrency: Transactions Transaction Semantics 11/36 Concurrency: Transactions Transaction Semantics 11/36

@ TSC is weaker: gives strong isolation, but allows parallel execution v
@ TSC is stronger: accesses within a transaction may not be re-ordered VN

Translation of atomic-Blocks [T Translation of atomic-Blocks L

A TM system must track which shared memory locations are accessed: A TM system must track which shared memory locations are accessed:
@ convert every read accesrom a shared variable to|ReadTx (&x) @ convert every read access x from a shared variable t0 ReadTx (&x)
@ convert every write access to a shared variable to[writeTx(&x,e) @ convert every write access x=e to a shared variable to WriteTx (&x,e)

Convert atomic blocks as follows: Convert atomic blocks as follows:

do {

?tomlc { . StartTx(); at(/)r;lc { — StartTx(Q;
} //qcode_with nd WriteTx } Col'&i—l // code with ReadTx and WriteTx
PE ('CommitTx()); } while (!CommitTx());

@ translation can be done using a pre-processor
» determining a minimal set of memory accesses that need to be transactional
requires a good static analysis
» idea: translate all accesses to global variables and the heap as TM
» more fine-grained control using manual translation
@ an actual implementation might provide aeyword
when executing retry, the transaction aborts and re-starts
the transaction will again wind up at retry unless its read sef changes
~ block until a variable in the read-set has changed
similar to condition variables in monitors v

Concurrency: Transactions 12/36 Concurrency: Transactions 12/36
A Software TM Implementation i

A software TM implementation allocates a fransaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and write-set: locations accessed so far
Software Transactional Mem ory ® read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses /azy versioning: writes are stored in a redo-log and done on commit
@ validating conflict detection: accessing a modified address aborts

Yy

v

v

Concurrency: Transactions Software Transactional Memory 13 /36 Concurrency: Transactions Software Transactional Memory 14 /36

A Software TM Implementation T

A software TM implementation allocates a transaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and write-sef: locations accessed so far
@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses lazy versioning: writes are stored in a redo-log and done on commit
@ validating conflict detection: accessing a modified address aborts
TL2 stores a global version counter and:

@ a read version in each object (allocate a few bytes more in each call to
malloc, or inherit from a transaction object in e.g. Java)

@ aredo-log in the transaction descriptor
@ a read- and a write-set in the transaction descriptor
@ a read-version: the version when the transaction started

Software Transactional Memory 14 /36

Concurrency: Transactions

Committing a Transaction i

A transaction can succeed if none of the read locations has changed:

committing a transaction

bool CommitTx(TMDesc tx) {
foreach (e in tx.writeSet)
if ('try_wait(e.obj.sem)) goto Fail;
WV = FetchAndAdd(&globalClock);
foreach (e in tx.readSet)
if (e.obj.version > tx.RV) goto Fail;
foreach (e in tx.redoLog)
e.objle.offset] = e.value;
foreach (e in tx.writeSet) {
e.obj = WV; signal(e.obj.sem);
}
return true;
Fail:
// signal all acquired semaphores

return

}

Concurrency: Transactions

Software Transactional Memory 16/36

Principles of TL2 T

: obtain a version tx.RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.

A read from a field at offset of object obj is implemented as follows:

transactional read
int ReadTx(TMDesc tx, object obj, int offset) {
if (&(obj[offset]) in tx.redolog) {
return tx.redoLog[&objloffset]];
T else {
atomic { vl = obj.timestamp; locked = obj.sem<l; };
result = obj[offset];

v2 = obj.timestamp;
if [locked | | |v1 I= v2|| ||v1 > tx.RV)| AbortTx(tx) ;
}

tx.readSet = tx.readSet.add(obj);
return result;

}

Concurrency: Transactions

s
Properties of TL2 i

Opacity is guaranteed by aborting a read access with an inconsistent value:

StartTx ReadTx WriteTx ReadTx
—$ o o o

]]
]] i
H

CommitTx
_—

K P write redo-log
validate read set
increment global clock

memory state seems to be consistent

Other observations:
@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)
@ writing values still requires locks
» deadlocks are still possible
» since other transactions can be aborted, one can preempt transactions that
are deadlocked
» since lock accesses are generated, computing a lock order up-front might be
possible
@ at least two memory barriers are necessary in ReadTx
» read version+lock, 1fence, read value, 1fence, read version

@ there might be contention on the global clock
17/36

Concurrency: Transactions

General Challenges when using TM [T Integrating Non-TM Resources T

Executing atomic blocks by repeatedly trying to execute them non-atomically

Allowing access to other resources than memory inside an atomic block
creates new problems: poses problems:
a transaction m'lght unnegessarlly bg aborted @ storage management, condition variables, volatile variables,

» the granularity of what is locked might be too large input/output

» a TM implementation might impose restrictions: . .) .
// Thread 1 // Thread 2 @ semantics should be as if atomic implements SLA or TSC semantics
atomic 1 clock=1

atomic {

WriteTx(&x,0) = 42; // clock=13
1

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction
» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed
~ idea of the original STM proposal

@ TM system should figure out which memory locations must be logged
@ danger of live-locks: transaction B might abort A which might abortB ...

Concurrency: Transactions Software Transactional Memory 18/36 Concurrency: Transactions Software Transactional Memory

19/36

Integrating Non-TM Resources [T

Allowing access to other resources than memory inside an atomic block
poses problems:

@ storage management, condition variables, volatile variables,
input/output
@ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following:

@ Prohibit It. Certain constructs do not make sense. Use compiler to reject
these programs.

@ Execute It. /O operations may only happen in some runs (e.g. file writes
usually go to a buffer). Abort if I/O happens.

@ Irrevocably Execute It. Universal way to deal with operations that cannot
be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict.

@ Integrate It. Re-write code to be transactional: error logging, writing data
to afile,

Hardware Transactional Memory

Concurrency: Transactions Software Transactional Memory 19/36 Concurrency: Transactions Hardware Transactional Memory

20/ 36

Hardware Transactional Memory T Hardware Transactional Memory T

Transactions of a limited size can also be implemented in hardware: Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets @ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache: @ conflict detection is eagerusing the cache:
» additional hardware makes it cheap to perform conflict detection » additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts » if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts » if a cache-line in the write set must be written-back, the transaction aborts
~ limited by fixed hardware resources, a software backup must be provided ~~ limited by fixed hardware resources, a software backup must be provided

Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions
-~ atransaction has to be translated differently
1\ mixing transactional and non-transactional accesses is problematic
@ |mplicit Transactional HTM: only the beginning and end of a fransaction
are marked
» same instructions can be used, hardware interprets them as transactional
» only instructions affecting memory that can be cached can be executed
transactionally
» hardware access, OS calls, page table changes, etc. all abort a transaction
» provides sfrong isolation

Concurrency: Transactions 21/36 Concurrency: Transactions 21/36
Example for HTM i Example for HTM i
AMD Advanced Synchronization Facilities (ASF): AMD Advanced Synchronization Facilities (ASF):

@ defines a logical speculative region @ defines a logical speculative region
onstructions provide explicit data transfer between normal @ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region memory and speculative region
@ aimed to implement larger atomic operations @ aimed to implement larger atomic operations
Intel’s TSX in Broadwell/Skylake microarchitecture (since Aug 2014): Intel's TSX in Broadwell/Skylake microarchitecture (since Aug 2014):

4 implicit transacﬁonal] can use normal instructions within transactions implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single fransaction bit on cache lines @ tracks read/write set using a single fransaction bit on cache lines
provides space for a backup of the whole CPU state (registers, ...) @ provides space for a backup of the whole CPU state (registers, ...)

*]

o

use a simple counter to support nested transactions use a simple counter to support nested transactions
may abort at any time due to lack of resources may abort at any time due to lack of resources
aborting in an inner transaction means aborting all of them @ aborting in an inner transaction means aborting all of them

Intel provides two software interfaces to TM:

@ Restricted Transactional Memory (RTM)
© Hardware Lock Elision (HLE)

Concurrency: Transactions Hardware tional Memory 22/36 Concurrency: Transactions Hardware Transactional Memory 22/36

Restricted Transactional Memory (Intel) T Restricted Transactional Memory (Intel) T

Provides new instructions XBEGIN, XEND, XABORT, and XTEST: Provides new instructions XBEGIN, XEND, XABORT, and XTEST:
@ XBEGIN takes an instruction address where execution continues if the @ XBEGIN takes an instruction address where execution continues if the
transaction aborts transaction aborts
@ XEND commits the transaction started by the last XBEGIN @ XEND commits the transaction started by the last XBEGIN
@ XABORT aborts the current transaction with an error code @ XABORT aborts the current transaction with an error code
@ XTEST checks if the processor is executing transactionally @ XTEST checks if the processor is executing transactionally
The instruction XBEGIN can be implemented as a C function: The instruction XBEGIN can be implemented as a C function:
int datal[100]; // shared int datal[100]; // shared
void update (i tdx~int value) { void update(int idx, int value) A
if g xbegin()== if (_xbegin()==-1) {

datal[idx] += Gglue; | datal[idx] += value;

_xend (J] _xend();

else { } else {

// transaction failed // transaction failed
T ¥

} }

~+ user must provide fall-back code

Concurrency: Transactions Restricted Transactional Memory 24/36 Concurrency: Transactions Restricted Transactional Memory 24 /36
Considerations for the Fall-Back Path i Protecting the Fall-Back Path nm
Consider executing the following code in parallel with itself: Use a lock to prevent the transaction from interrupting the fall-back path:
int data[100]; // shared

int data[100]; // shared

int mutex;
void update(int idx, int value) { void update(int idx, int value) {
if (Lxbegin()==-1) { if (fxbeginCO=—=—t—
datal[idx] += value;
_xend(); data[idx] += value;
} else { _xend();
| datal[idx] += value; } else {
+ wait(mutex) ;
} datal[idx] += value;
signal (mutex);
}
T

e fall-back path may not run in parallel with others v
o /\ transactional region may not run in parallel with fall-back path

Concurrency: Transactions Hardware tional Memory Restricted Transactional Memory 25/36 Concurrency: Transactions Hardware Transactional Memory Restricted Transactional Memory 26 /36

Protecting the Fall-Back Path i

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared

int mutex;

void update(int idx, int value) {

if (_xbegin(Q==-1) {
if (_mutex>0 _xabort();
datalidx]| += value;
_xend();
} else {

[wait(mutex); |
datalidx] += value;
signal (mutex);

}

@ fall-back path may not run in parallel with others v
o /\ transactional region may not run in parallel with fall-back path

Concurrency: Transactions Hardware Transactional Memory Restricted Transactional Memory 26/36

lllustrating Transactions [
Augment MESI state with extra bit 7" per cache line. CPU A: E5, CPU B: |
Thread A Thread B
int tmp = datal[idx]; int tmp = datal[idx];
datalidx] = tmp+value; datalidx] = tmp+value;

_xend() ; _xend();

tmp=data [idx] datal[idx]=tmp+value

A ">
store. ——~ b a0
Sd s —4
& 2
o ©
T
T 0 = {%
g o -
Sy S
4] Pom -
< i = P=
O P o ' {
& o % .
< K 4
data[1dx]=tmp+value _xend ()

Concurrency: Transactions

Restricted Transactional Memory 2836

Implementing RTM using the Cache

Transactional operation:

@ augment each cache line with an extra bit T’
@ use a nesting counter C' and a backup register set

~- additional transaction logic:

c | © XBEGIN increment C and, if C = 0, back

up registers
@ r/w access to cachelines sets T'if C > 0

@ applying an invalidate message from
invalidate queue to a cache line with
T =1 issues XABORT

@ observing a read message for a
madified cache line with T = 1 issues
XABORT

@ XABORT transition from all 77 flags to I,

register
CPUA _'bé%k
store
®— puffer
|
cache T
[
invalidate
queue
Memory

sets C' = 0 and restores CPU registers

Concurrency: Transactions

| XCOMMIT decrementnd, if C' =0,
clear al|l 7" flags

Hardware Transactional Memory Restricted Transactional Memory

27/36

