Why Memory Barriers are not Enough [

Script generated by TTT Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
@ for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
Title: Petter: Programmiersprachen (02.11.2016) @ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

Date: Wed Nov 02 14:16:26 CET 2016

Duration: 85:47 min

Pages: 47
‘Atomic Executions, Locks and Monitors 2/40
Why Memory Barriers are not Enough m Atomic Executions m
Communication via memory barriers has only specific applications: A concurrent program consists of several threads that share common
@ coordinating state transitions between threads resources:
@ for systems that require minimal overhead (and no de-scheduling) Oare often pieces of memory, but may be an I/O entity
Often certain pieces of memory may only be modified by one thread at once. > afile can be modified through a shared handle

@ can use barriers to implement automata that ensure mutual exclusion @ for each resource an invariant must be retained

. . . . » a head and tail pointer must define a linked list
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

. .) . @ an invariant may span several resources
Need a mechanism to update these pieces of memory as a single atomic . o
execution: @ during an update, an invariant may be broken

. ~ several resources must be updated together to ensure the invariant
@ several values of the objects are

a=1,b=1 used to compute new value @ which particular resources need to be updated may depend on the
A ‘;4’ @ certain information from the thread current program state
a @ flows into this computation
b ‘. @ certain information flows from the

computation to the thread

Atomic Executions, Locks and Monitors 2/40 Atomic Executions, Locks and Monitors 3/40

Atomic Executions [T Overview L

We will address the established ways of managing synchronization.

A concurrent program consists of several threads that share common
@ present techniques are available on most platforms

resources:
@ resources are often pieces of memory, but may be an I/O entity @ likely to be found in most existing (concurrent) software
» afile can be modified through a shared handle @ techniques provide solutions to solve common concurrency tasks
@ for each resource an invariant must be retained @ techniques are the source of common concurrency problems
» ahead and tail pointer must define a linked list
@ an invariant may span several resources Presented technigues applicable to C, C++ (pthread), Java, C# and other

imperative languages.

@ during an update, an invariant may be broken
~+ several resources must be updated together to ensure the invariant

@ which particular resources need to be updated may depend on the
current program state

Ideally, we would want to mark a sequence of operations that update shared
resources for atomic execution [Harris et al.(2010)Harris, Larus, and Rajwar].
This would ensure that the invariant never seems to be broken.

Atomic Executions, Locks and Monitors 3/40 ‘Atomic Executions, Locks and Monitors 440
Overview T Atomic Execution: Varieties i
We will address thle esrabfrshedlways of managing synchronization. Definition (Atomic Execution)
@ present techniques are available on most platforms . . L
. . o A computation forms an atomic execution if its effect can only be observed as
@ likely to be found in most existing (concurrent) software a single transformation on the memory.

@ techniques provide solutions to solve common concurrency tasks
@ technigues are the source of common concurrency problems

Presented techniques applicable to C, C++ (pthread), Java, C# and other
imperative languages.

Learning Outcomes

@ Principle of {Atomic Executions|

(2] |Wait-Free Algorithms|based on Atomic Operations(cmg NI AL p
© [Locks: Mutex, Semaphore, and Monitor | ¥
(%] |Dead|ocks: Concept and Prevention |

Atomic Executions, Locks and Monitors 4/40 Atomic Executions, Locks and Monitors 5/40

Atomic Execution: Varieties [T Atomic Execution: Varieties T

Definition (Atomic Execution)
A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Definition (Atomic Execution)
A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Several classes of atomic executions exist:
Wait-Free : an atomic execution always succeeds and never blocks
Lock-Free : an atomic execution may fail but never blocks
Locked : an atomic execution always succeeds but may block the thread

Several classes of atomic executions exist:
Wait-Free : an atomic execution always succeeds and never blocks

Lock-Free : an atomic execution may fail but never blocks
Locked : an atomic execution always succeeds but may block the thread

Transaction : an atomic execution|may faill(and may implement recovery) Transaction : an atomic execution may fail (and may implement recovery)

These classes differ in
amount of data they can access during an atomic execution
expressivity of operations they allow
granularity of objects in memory they require

Atomic Executions, Locks and Monitors 5/40 Atomic Executions, Locks and Monitors 5/40
Wait-Free Updates T
Which operations on a CPU are atomic executions? (j and tmp are registers)
Program
Program 2 bl
Program 1 L int tmp = i;
= "
i = i+k; .
j = tmp;

Wait-Free Atomic Executions

Wait-Free Atomic Executions 7/40

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions 6/40 Atomic Executions, Locks and Monitors

Wait-Free Updates [
Which operations on a CPU are atomic executions? (j and tmp are registers)

Program 3

Program 2
Program 1 L int tmp = i;
it+; 3= i=3;
i = i+k; .
J = tmp;

Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions

Atomic Executions, Locks and Monitors 7/40
Wait-Free Updates [
Which operations on a CPU are atomic executions? (j and tmp are registers)

Program 2 Program 3
Program 1 L int tmp = i;

=2 .
i = i+k; .
] = tmp;

Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declared as volatile)
@ |dea: lock the cache/bus for an address for the duration of an instruction;
on x86:
» Program 1 can be implemented using a lock inc [addr_i] instruction
» Program 2 can be implemented using mov eax,k;
lock xadd [addr_i] ,eax; mov reg_ j,eax
» Program 3 can be implemented using lock xchg [addr_il,reg.j
/N Without lock, the load and store generated by i++ may be interleaved
with a store from another processor.

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions 7/40

Wait-Free Updates T

Which operations on a CPU are atomic executions? (j and tmp are registers)
Program 3

Program 2
Program 1 o int tmp = i;
i+ 3= i=j;
i = i+k; .
J = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:

@ i mustbe in memory (e.g. declared as volatile)
@ |dea: lock the cache/bus for an address for the duration of an instruction;
on x86:
» Program 1 can be implemented using a 1ock inc [addr_i] instruction
» Program 2 can be implemented using mov eax,k;
lock xadd [addr_i],eax; mov reg_j,eax

» Program 3 can be implemented using Tock|[xchg | [addr il ,reg.j

Atomic Executions, Locks and Monitors. ‘Wait-Free Atomic Executions 7/40

Wait-Free Bumper-Pointer Allocation T
Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char lheap[2720];
char* = &heap[0];

char* alloc(int size) {
char* start = firstFre%
firstFree = firstFree ize;

if (start+size>sizeof(heap)) garbage_collect();
return start;

} o'

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions 8/40

Wait-Free Bumper-Pointer Allocation T Marking Statements as Atomic T

Garbage collectors often use a bumper pointer to allocated memory: Rather than writing assembler: use made-up keyword atomic:
Bumper Pointer Allocation Program 2 Program 3
- Program 1 e
char heap[2720]; atomic { atomic ‘
charx firstFree = &heap[0]; atomic { j = i; int tmp = i;
it+; . . i=13
i = i+k; .
char* alloc(int size) { + 3 J = tmp;
char* start = firstFree; }
firstFree = firstFree + size;
if (start+size>sizeof(heap)) garbage_collect();
return start,;
} ~
@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap
|Thread-safe impleme ntation:|
@ the alloc function can be used from multiple threads when implemented
using ::1 lock xadd [_firstFree] ,eaxlinstruction
@ -~ requires inline assembler
Atomic Executions, Locks and Monitors 8/40 ‘Atomic Executions, Locks and Monitors 9/40
Marking Statements as Atomic T Marking Statements as Atomic T
Rather than writing assembler: use made-up keyword atomic: Rather than writing assembler: use made-up keyword atomic:
Program
Program 2 ikl Program 2 el
Program 1 o Program 1 Seite
. atomic { ; . . atomic { ; .
atomic { = - int tmp = i; atomic { S, int tmp = 1i;
it 1o i=3j; i+ 1 i=3;
i=i+k; . i = i+k; .
}) j = tmp; ¥ 1 J = tmp;
} }
The statements in an atomic block execute as atomic execution: The statements in an atomic block execute as afomic execution:
pEpmic { tmp = i; i = j; j =tmg_ atomic { tmp = i; 1 = j; j = tmp_}
|£1=: o A & _-;;;:::;‘_

.

@ atomic only translatable when a corresponding atomic GPU instruction
exist
@ the notion of requesting atomic execution is a general concept

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions 9/40 Atomic Executions, Locks and Monitors ‘Wait-Free Atomic Executions 9/40

Wait-Free Synchronization [

Wait-Free algorithms are limited to a single instruction:
@ [no control flow possible| no behavioral change depending on data
@ often, there are instructions that execute an operation conditionally

Program 4 Program 5 Program 6
atomic { atomic { atomic {
T = b, 15 = oy r = (k==1);
b = 0; b= 1; if (©)[i = j;]
¥ b

Operations update a memory cell and return the previous value.

@ the first two operations can be seen as settingaflagbto v € {0,1}ifb
not already contains v

» this operation is called ynodify-and-test
@ the third case generalizes this to arbitrary values
> this operation is called|compare-and-swap |

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions

Wait-Free Synchronization 10/ 40

Lock-Free Algorithms

Atomic Executions, Locks and Monitors Lock-Free Algorithms 11/40

Wait-Free Synchronization T

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ often, there are instructions that execute an operation conditionally

Program 4 Program 5 Program 6
atomic { i atomic {
r =b; r = (k==1i);
b =0; if (r) i = j;
¥ }

Operations update a memory cell and return the previous value.

@ the first two operations can be seen as setting a flagb to v € {0,1} if b
not already contains v

» this operation is called modify-and-test
@ the third case generalizes this to arbitrary values
» this operation is called compare-and-swap

~+ use as building blocks for algorithms that can fail
Atomic Executions, Locks and Monitors

Lock-Free Algorithms T

Wait-Free Synchronization 10/ 40

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.

Atomic Executions, Locks and Menitors Lock-Free Algorithms 12/40

Lock-Free Algorithms [

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value ir| i into & (using memory barriers)
© calculate a new value[; = [(k)
© update i to j if i = k stTholds
@ go to first step if i # k meanwhile

Atomic Executions, Locks and Monitors 12/40
Lock-Free Algorithms [

If a wait-free implementation is not possible, a /ock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
© calculate a new value
© update i to j if i = k still holds
@ go to first step if i # k meanwhile
/N note: i = k must imply that no thread has updated i
~+ general recipe for lock-free algorithms
@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into » bytes
@ read these bytes atomically
@ calculate a new value
@ perform a compare-and-swap operation on these n bytes

Atomic Executions, Locks and Monitors Lock-Free Algorithms 12/40

Lock-Free Algorithms T

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
© calculate a new value j = f(k)
© update i to j if i = k still holds
@ go to first step if i # k meanwhile
/N note: i = k must imply that no thread has updated i

‘Atomic Executions, Locks and Monitors 12/40
Lock-Free Algorithms T

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in 7 into & (using memory barriers)
@ calculate a new value j = f(k)
© update i to j if i = k still holds
@ go to first step if i # k& meanwhile
/N note: i = k must imply that no thread has updated i
~+ general recipe for lock-free algorithms
@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into n bytes
@ read these bytes atomically
@ calculate a new value
@ perform a compare-and-swap operation on these n bytes
~+ calculating new value must be repeatable

Atomic Executions, Locks and Menitors Lock-Free Algorithms 12/40

Limitations of Wait- and Lock-Free Algorithms]| Limitations of Wait- and Lock-Free Algorithms]|

Wait-/Lock-Free algorithms are severely limited in terms of their computation: Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a|single atomic operation | @ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes @ set of atomic operations is architecture specific, but often includes
- |exchange of a memory cell|with a register » exchange of a memory cell with a register

» [compare-and-swap fof a register with a memory cell
> |fetch-and-add pn integers in memory

» |modify-and-testjon bits in memory

@ provided instructions usually allow only one memory operand @ provided instructions usually allow only one memory operand

~= only very simple algorithms can be implemented, for instance

| binary semaphores|: a flag that can be acquired (set) if free (unset) and
released

|counting semaphores| . an integer that can be decreased if non-zero and
increased

: ensures mutual exclusion using a binary semaphore

: ensures mutual exclusion using a binary semaphore, allows
other threads to block until the next release of the resource

compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

yyy

Atomic Executions, Locks and Monitors Lock-Free Algorithms 13/40 Atomic Executions, Locks and Monitors. Lock-Free Algorithms 13 /40

Limitations of Wait- and Lock-Free Algorithms]|

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register
» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory
» modify-and-test on bits in memory
@ provided instructions usually allow only one memory operand

~= only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and A lock is a data structure that
released @ protects a| critical section:|a piece of code that may produce incorrect
counting semaphores : an integer that can be decreased if non-zero and results when executed concurrently from several threads
increased @ ensures|mutual exclusion:|no two threads execute at once
mutex : ensures mutual exclusion using a binary semaphore ol blocklother threads as soon as one thread executes the critical section
monitor : ensures mutual exclusion using a binary semaphore, allows @ can be|acquired|and Ireleased |

other threads to block until the next release of the resource
We will collectively refer to these data structures as

Atomic Executions, Locks and Monitors Lock-Free Algorithms 13 /40 Atomic Executions, Locks and Monitors Locked Atomic Executions 15/40

A may deadlock the program

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() 1
bool avail;
do { <

void signal() { atomic {

atomic { ¥ avail =[s>0
T if (avail)

¥
} while (lavail); ///

}

Atomic Executions, Locks and Monitors

Locked Atomic Executions

Semaphores and Mutexes
A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;
do {
void signal() { atomic {

atomic {} avail = s>0;

¥ if (avail) s-——;
}
} while (lavail);
¥

A counting semaphore can track how many resources are still available.

@ a thread acquiring a resource executes wait ()

@ if a resource is still available, wait () returns

@ once a thread finishes using a resource, it calls signal () to release
Special case: initializing with s = 1 gives a binary semaphare:

@ can be used to block and unblock a thread

@ can be used to protect a single resource
~in this case the data structure is also called

Atomic Executions, Locks and Monitors

i

16 /40

i

16/40

T

Semaphores and Mutexes
A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;
do {
atomic {
avail = s>0;

void signal() {
atomic { s = s + 1; }
} if (avail) s--;
¥
} while (lavail);
}
A counting semaphore can track how many resources are still available.
@ athread acquiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal () to release

‘Atomic Executions, Locks and Monitors

Locked Atomic Executions 16 /40

Implementation of Semaphores
A semaphore does not have to wait busily:

void wait() {
bool avail;
do {

atomic {
void signal() {)
‘gn avail = s>0;
atomic { s = s + 1; }) .
if (avail) s--;
}
T
if (lavail) de schedule(&s);

Fwhile (lavail);

Atomic Executions, Locks and Monitors

Locked Atomic Executions 17 /40

Implementation of Semaphores [Practical Implementation of Semaphores
A semaphore does not have to wait busily: Certain optimisations are possible:
void wait() { void wait() {
bool avail; bool avail;
do { do {

atomic { .
. . atomic {
avail = s>0; void signal() {

if (avail) s——; atomic { s = s + 1; }

void signal() {

atomic { s = s + 1; } avail = s>0;

if (avail) s--;

b
¥ ¥ }
if (lavail) de_schedule(&s); if (lavail) de_schedule(&s);
} while (lavail); } while (lavail);
} }

Busy waiting is avoided: . . .
. In general, the implementation is more complicated
@ a thread failing to decrease s executes de_schedule()) . .
: : ® wait () may busy wait for a few iterations
@ de_schedule() enters the operating system and inserts the current + avoids de-scheduling if the lock is released frequently
thread into a queue of threads that will be woken up when s becomes ~ better throughput for semaphores that are held for a short time

non-zero, usually by monitoring writes to &s o o iaht have 1o inform the OS that s has b it
@ once athread calls signal(), the first thread ¢ waiting on &s is extracted signal() might have to inform the at's has been written

@ the operating system lets ¢ return from its call to de_schedule ()

Atomic Executions, Locks and Monitors Locked Atomic Executions 17 /40 Atomic Executions, Locks and Monitors. Locked Atomic Executions

Practical Implementation of Semaphores U Mutexes

Certain optimisations are possible:

void wait() {
bool avail;

do {
. , atomic {
void signal() { . :
atomic { s =s + 1: } avail = s>0; One common use of semaphores is to guarantee mutual exclusion.
}) if (avail) s--; @ in this case, a binary semaphore is also called a mutex
if (1avail) de_schedule(&s); @ e.9. add a lock to the double-ended queue data structure
} while (lavail); /N decide what needs protection and what not

}

In general, the implementation is more complicated
@ wait () may busy wait for a few iterations

» avoids de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time

@ signal() might have to inform the OS that s has been written

~+ using a semaphore with a single core reduces to if (s) s--; s++;

Atomic Executions, Locks and Monitors Locked Atomic Executions 18/40 Atomic Executions, Locks and Monitors Locked Atomic Executions

T

18/40

19/40

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function

Atomic Executions, Locks and Monitors
Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread t waits for a data structure to be filled:

» ¢ will call e.g. pop() and obtain -1
» t then has to call again, until an element is available

t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

20/40

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized

© becomes problematic in recursive calls] it blocks

@ if a thread + waits for a data structure to be filled:

» t will call e.g. pop() and obtain -1
» ¢ then has to call again, until an element is available

t is busy waiting and produces contention on the lock

‘Atomic Executions, Locks and Monitors
Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. pop() and obtain -1
» t then has to call again, until an element is available

t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

20/40

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

@ if that lock is already taken, proceed if it is taken by the current thread

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

@ if that lock is already taken, proceed if it is taken by the current thread
~+ need a way to release the lock after the return of the last recursive call

Atomic Executions, Locks and Monitors Locked Atomic Executions 20/40

Atomic Executions, Locks and Monitors Locked Atomic Executions 20/ 40

Implementation of a Basic Monitor T Condition Variables T

A monitor contains a mutex count and the id of the thread tid occupying it: v Monitors simplify the construction of thread-safe resources.
typedef struct monmitor mon_t; Still: Efficiency problem when using resource to synchronize:

struct monitor { int tid; int count; }; o if a thread ¢ waits for a data structure to be filled:

void monitor_init(mon_t* m) { memset(m, 0, sizeof(mon_t)); ¥ » ¢ will call e.g. pop() and obtain -1
» ¢ then has to call again, until an element is available

Define monitor _enter and monitor leave:
& t is busy waiting and produces contention on the lock

@ ensure mutual exclusion of accesses t0 mon_t
@ track how many times we called a monitored procedure recursively

void monitor_enter(mon_t *m) { void monitor_leave(mon_t *m) {
bool mine = false; atomic {
while ('mine) { m->count--;
atomic { if (m->count==0) {
mine = thread1d()==m->tid; // wake up threads
if (mine) m->count++; else m->tid=0;
if (m->tid==0) { }
mine = true; m->count=1; T
m->tid = thread_id(); }
¥
¥;
if ('mine) de_schedule(&m->tid);}}
Atomic Executions, Locks and Monitors 21740 Atomic Executions, Locks and Monitors 22/40
Condition Variables T Condition Variables i
v Monitors simplify the construction of thread-safe resources. v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize: Still: Efficiency problem when using resource to synchronize:
e if a thread t waits for a data structure to be filled: @ if a thread ¢ waits for a data structure to be filled:
» t will call e.g. pop() and obtain -1 » t will call e.g. pop() and obtain -1
» t then has to call again, until an element is available » t then has to call again, until an element is available
A t is busy waiting and produces contention on the lock & t is busy waiting and produces contention on the lock
Idea: create a condition variable on which to block while waiting: Idea: create a condition variable on which to block while waiting:
struct monitor { int tid; int count; int cond; }; struct monitor { int tid; int count; int cond; };

Define these two functions:
@ wait for the condition to become true
» called while being inside the monitor
» temporarily releases the monitor and blocks
» when signalled, re-acquires the monitor and returns
© signal waiting threads that they may be able to proceed
» one/all waiting threads that called wait will be woken up, two possibilities:
signal-and-urgent-wait : the signalling thread suspends and continues once
the signalled thread has released the monitor
signal-and-continue the signalling thread continues, any signalled thread
enters when the monitor becomes available

Atomic Executions, Locks and Monitors Locked Atomic Executions 22/40 Atomic Executions, Locks and Monitors Locked Atomic Executions 22/40

