Deadlocks with Monitors

Definition (Deadlock)
A deadlock is a situation in which two processes are waiting for the respective other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class:

```java
class Foo {
    public Foo other = null;
    public synchronized void bar() {
        ... if (*) other.bar(); ...
    }
}
```

and two instances:

```java
Foo a = new Foo();
Foo b = new Foo();
a.other = b; b.other = a
// in parallel:
a.bar() || b.bar();
```

Sequence leading to a deadlock:

- threads A and B execute a.bar() and b.bar()
- a.bar() acquires the monitor of a
- b.bar() acquires the monitor of b
- A happens to execute other.bar()
- A blocks on the monitor of b
- B happens to execute other.bar()
- → both block indefinitely

How can this situation be avoided?
Treatment of Deadlocks

Deadlocks occur if the following four conditions hold [Coffman et al. (1971)]:

1. **mutual exclusion**: processes require exclusive access
2. **wait for**: a process holds resources while waiting for more
3. **no preemption**: resources cannot be taken away from processes
4. **circular wait**: waiting processes form a cycle

The occurrence of deadlocks can be:

1. **ignored**: for the lack of better approaches, can be reasonable if deadlocks are rare
2. **detection**: check within OS for a cycle, requires ability to preempt
3. **prevention**: design programs to be deadlock-free
4. **avoidance**: use additional information about a program that allows the OS to schedule threads so that they do not deadlock

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be **partially ordered**.

Definition (lock sets)

Let \(I \) denote the set of locks. We call \(\lambda(p) \subseteq I \) the lock set at point \(p \), that is, the set of locks that may be in the "acquired" state at program point \(p \).
Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)
Let \(L \) denote the set of locks. We call \(\lambda(p) \subseteq L \) the lock set at \(p \), that is, the set of locks that may be in the "acquired" state at program point \(p \).

We require the transitive closure \(\sigma^+ \) of a relation \(\sigma \):

\[
\sigma^0 = \sigma \\
\sigma^{i+1} = \{ (x_1, x_3) \mid \exists x_2 \in X : (x_1, x_2) \in \sigma^i \land (x_2, x_3) \in \sigma^j \}
\]

Definition (transitive closure)
Let \(\sigma \subseteq X \times X \) be a relation. Its transitive closure is \(\sigma^+ = \bigcup_{i \in \mathbb{N}} \sigma^i \) where

\[
\sigma^0 = \sigma \\
\sigma^{i+1} = \{ (x_1, x_3) \mid \exists x_2 \in X : (x_1, x_2) \in \sigma^i \land (x_2, x_3) \in \sigma^i \}
\]

Each time a lock is acquired, we track the lock set at \(p \):

Definition (lock order)
Define \(\prec \subseteq L \times L \) such that \(l \prec l' \) if \(l \in \lambda(p) \) and the statement at \(p \) is of the form \(\text{wait}(l') \) or \(\text{monitor}_\text{enter}(l') \). Define the strict lock order \(\prec^+ \).

Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no \(a \in L \) with \(a \prec a \) then the program is free of deadlocks.

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)
Let \(L \) denote the set of locks. We call \(\lambda(p) \subseteq L \) the lock set at \(p \), that is, the set of locks that may be in the "acquired" state at program point \(p \).

We require the transitive closure \(\sigma^+ \) of a relation \(\sigma \):

\[
\sigma^0 = \sigma \\
\sigma^{i+1} = \{ (x_1, x_3) \mid \exists x_2 \in X : (x_1, x_2) \in \sigma^i \land (x_2, x_3) \in \sigma^i \}
\]

Each time a lock is acquired, we track the lock set at \(p \):

Definition (lock order)
Define \(\prec \subseteq L \times L \) such that \(l \prec l' \) if \(l \in \lambda(p) \) and the statement at \(p \) is of the form \(\text{wait}(l') \) or \(\text{monitor}_\text{enter}(l') \). Define the strict lock order \(\prec^+ \).
Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)

If there exists no \(a \in L \) with \(a \prec \hat{a} \) then the program is free of deadlocks.

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be **partially ordered**.

Definition (lock sets)

Let \(L \) denote the set of locks. We call \(\lambda(p) \subseteq L \) the lock set at \(p \), that is, the set of locks that may be in the “acquired” state at program point \(p \).

We require the transitive closure \(\sigma^+ \) of a relation \(\sigma \):

Definition (transitive closure)

Let \(\sigma \subseteq X \times X \) be a relation. Its transitive closure is \(\sigma^+ = \bigcup_{i \in \mathbb{N}} \sigma^i \) where

\[
\begin{align*}
\sigma^0 & = \sigma \\
\sigma^{i+1} & = \{ \langle x_1, x_3 \rangle \mid \exists x_2 \in X. \langle x_1, x_2 \rangle \in \sigma^i \land \langle x_2, x_3 \rangle \in \sigma^i \}
\end{align*}
\]

Each time a lock is acquired, we track the lock set at \(p \):

Definition (lock order)

Define \(\prec \subseteq L \times L \) such that \(l \prec l' \) iff \(l \in \lambda(p) \) and the statement at \(p \) is of the form \textit{wait}(l') or \textit{monitor.enter}(l'). Define the strict lock order \(\prec^+ \).

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be **partially ordered**.

Definition (lock sets)

Let \(L \) denote the set of locks. We call \(\lambda(p) \subseteq L \) the lock set at \(p \), that is, the set of locks that may be in the “acquired” state at program point \(p \).

We require the transitive closure \(\sigma^+ \) of a relation \(\sigma \):

Definition (transitive closure)

Let \(\sigma \subseteq X \times X \) be a relation. Its transitive closure is \(\sigma^+ = \bigcup_{i \in \mathbb{N}} \sigma^i \) where

\[
\begin{align*}
\sigma^0 & = \sigma \\
\sigma^{i+1} & = \{ \langle x_1, x_3 \rangle \mid \exists x_2 \in X. \langle x_1, x_2 \rangle \in \sigma^i \land \langle x_2, x_3 \rangle \in \sigma^i \}
\end{align*}
\]

Each time a lock is acquired, we track the lock set at \(p \):

Definition (lock order)

Define \(\prec \subseteq L \times L \) such that \(l \prec l' \) iff \(l \in \lambda(p) \) and the statement at \(p \) is of the form \textit{wait}(l') or \textit{monitor.enter}(l'). Define the strict lock order \(\prec^+ \).
Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call $\lambda(p) \subseteq L$ the lock set at p, that is, the set of locks that may be in the "acquired" state at program point p.

We require the transitive closure σ^+ of a relation σ:

Definition (transitive closure)

Let $\sigma \subseteq X \times X$ be a relation. Its transitive closure is $\sigma^+ = \bigcup_{i \in \mathbb{N}} \sigma^i$ where

$$
\sigma^0 = \sigma \\
\sigma^{i+1} = \{ (x_1, x_3) \mid \exists x_2 \in X, (x_1, x_2) \in \sigma^i \land (x_2, x_3) \in \sigma \}
$$

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define $\prec \subseteq L \times L$ such that $l \prec l'$ iff $l \in \lambda(p)$ and the statement at p is of the form $\text{wait}(l')$ or $\text{monitor} _\text{enter}(l')$. Define the strict lock order $\triangleleft := \prec^+$.

Deadlock Prevention through Partial Order

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call $\lambda(p) \subseteq L$ the lock set at p, that is, the set of locks that may be in the "acquired" state at program point p.

We require the transitive closure σ^+ of a relation σ:

Definition (transitive closure)

Let $\sigma \subseteq X \times X$ be a relation. Its transitive closure is $\sigma^+ = \bigcup_{i \in \mathbb{N}} \sigma^i$ where

$$
\sigma^0 = \sigma \\
\sigma^{i+1} = \{ (x_1, x_3) \mid \exists x_2 \in X, (x_1, x_2) \in \sigma^i \land (x_2, x_3) \in \sigma \}
$$

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define $\prec \subseteq L \times L$ such that $l \prec l'$ iff $l \in \lambda(p)$ and the statement at p is of the form $\text{wait}(l')$ or $\text{monitor} _\text{enter}(l')$. Define the strict lock order $\triangleleft := \prec^+$.
Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no \(a \in L \) with \(a \prec a \) then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) \(L_S \) and on monitors \(L_M \) such that \(L = L_S \cup L_M \).

Theorem (freedom of deadlock for monitors)
If \(\forall a \in L_M, a \neq a \) and \(\forall a \in L_M, b \in L, a \prec b \wedge b \prec a \Rightarrow a = b \) then the program is free of deadlocks.

Note: the set \(L \) contains instances of a lock.
- The set of lock instances can vary at runtime
- If we statically want to ensure that deadlocks cannot occur:
 - Summarize every lock/monitor that may have several instances into one
 - A summary lock/monitor \(\bar{a} \in L_M \) represents several concrete ones
 - Thus, if \(\bar{a} \prec \bar{a} \) then this might not be a self-cycle
 - Require that \(\bar{a} \neq \bar{a} \) for all summarized monitors \(\bar{a} \in L_M \)
Avoiding Deadlocks in Practice

How can we verify that a program contains no deadlocks?
- identify mutex locks L_S and summarized monitor locks $L_M^s \subseteq L_M$
- identify non-summary monitor locks $L_M^n = L_M \setminus L_M^s$
- sort locks into ascending order according to lock sets
- check that no cycles exist except for self-cycles of non-summary monitors

Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)

If there exists no $a \in L$ with $a \prec a$ then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) L_S and on monitors L_M such that $L = L_S \cup L_M$.

Theorem (freedom of deadlock for monitors)

If $\forall a \in L_S, a \nprec a$ and $\forall a \in L_M, b \in L, a \prec b \land b \prec a \Rightarrow a = b$ then the program is free of deadlocks.

Note: the set L contains instances of a lock.
- the set of lock instances can vary at runtime
- if we statically want to ensure that deadlocks cannot occur:
 - summarize every lock/monitor that may have several instances into one
 - a summary lock/monitor $\bar{a} \in L_M$ represents several concrete ones
 - thus, if $\bar{a} \prec \bar{a}$ then this might not be a self-cycle
 - require that $\bar{a} \nprec \bar{a}$ for all summarized monitors $\bar{a} \in L_M$

Avoiding Deadlocks in Practice

How can we verify that a program contains no deadlocks?
- identify mutex locks L_S and summarized monitor locks $L_M^s \subseteq L_M$
- identify non-summary monitor locks $L_M^n = L_M \setminus L_M^s$
- sort locks into ascending order according to lock sets
- check that no cycles exist except for self-cycles of non-summary monitors

⚠️ What to do when lock order contains cycle?
- determining which locks may be acquired at each program point is undecidable → lock sets are an approximation
- an array of locks in L_S: lock in increasing array index sequence
- if $l \in \lambda(P)$ exists $l' \prec l$ is to be acquired → change program: release l, acquire l', then acquire l again → inefficient
- if a lock set contains a summarized lock \bar{a} and \bar{a} is to be acquired, we’re stuck
Avoiding Deadlocks in Practice

How can we verify that a program contains no deadlocks?
- identify mutex locks L_S and summarized monitor locks $L_M \subseteq L_M$
- identify non-summary monitor locks $L_M^\prime = L_M \setminus L_M$
- sort locks into ascending order according to lock sets
- check that no cycles exist except for self-cycles of non-summary monitors

⚠️ What to do when lock order contains cycle?
- determining which locks may be acquired at each program point is
 undecidable -- lock sets are an approximation
- an array of locks in L_S: lock in increasing array index sequence
- if $l \in \lambda(P)$ exists $l' < l$ is to be acquired -- change program: release l,
 acquire l', then acquire l again -- inefficient
- if a lock set contains a summarized lock \bar{a} and \bar{a} is to be acquired, we're
 stuck

an example for the latter is the
mean{Foo} class: two instances of the same class call
each other

Refining the Queue: Concurrent Access

Add a second lock $s \rightarrow t$ to allow concurrent removal/peeking:

```c

double-ended queue: removal

int PopRight(DQueue* q) {
    QNode* oldRightNode;
    wait(q->t); //wait to enter the critical section
    QNode* rightSentinel = q->right;
    oldRightNode = rightSentinel->left;
    if (oldRightNode==leftSentinel) { signal(q->t); return -1; }
    QNode* newRightNode = oldRightNode->left;
    int c = oldRightNode->leftSentinel;
    if (c) wait(q->s);
    newRightNode->right = rightSentinel;
    rightSentinel->left = newRightNode;
    if (c) signal(q->s);
    free(oldRightNode);
    return val;
}
```

Example: Deadlock freedom

Is the example deadlock free? Consider its skeleton:

```c

double-ended queue: removal

void PopRight() {
    wait(q->t);
    ...
    if (*) { signal(q->t); return; }
    ...
    if (c) wait(q->s)
    ...
    if (c) signal(q->s);
    signal(q->t);
}
```

Example: Deadlock freedom

Is the example deadlock free? Consider its skeleton:

```c

void PopRight() {
    ...
    wait(q->t);
    ...
    if (*) { signal(q->t); return; }
    ...
    if (c) wait(q->s);
    ...
    if (c) signal(q->s);
    signal(q->t);
    }
```

- in \textbf{PushLeft} the lock set for s is empty
- here, the lock set of s is \{\textbf{t}\}
- \textbf{t} \textbf{<} \textbf{t}$ and transitive closure is $\textbf{t} \textbf{<} s$
- \rightarrow the program cannot deadlock
Atomic Execution and Locks

Consider replacing the specific locks with `atomic` annotations:

```c
void PopRight() {
    ...
    wait(q->r);  atomic
    ...
    if (*) { signal(q->r); return; }
    ...
    if (c) wait(q->s);  atomic
    ...
    if (c) signal(q->s);
    signal(q->r);
}
```

- nested `atomic` blocks still describe one atomic execution
-locks convey additional information over `atomic`
-locks cannot easily be recovered from `atomic` declarations

Outlook

Writing `atomic` annotations around sequences of statements is a convenient way of programming.

Idea of mutexes: Implement `atomic` sections with locks:
- a single lock could be used to protect all `atomic` blocks
- more concurrency is possible by using several locks
 - see the `PushLeft, PopRight` example
- some statements might modify variables that are never read by other threads → no lock required
- statements in one `atomic` block might access variables in a different order to another `atomic` block → deadlock possible with locks implementation
- creating too many locks can decrease the performance, especially when required to release locks in λ(1) when acquiring!
ConcURRENCY across Languages

In most systems programming languages (C,C++) we have
- the ability to use atomic operations
- we can implement wait-free algorithms

In Java, C# and other higher-level languages
- provide monitors and possibly other concepts
- often simplify the programming but incur the same problems

<table>
<thead>
<tr>
<th>language</th>
<th>barriers</th>
<th>wait-/lock-free</th>
<th>semaphore</th>
<th>mutex</th>
<th>monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C,C++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>Java,C#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) some pthread implementations allow a reentrant attribute
(b) newer API extensions (java.util.concurrent.atomic.* and System.Threading.Interlocked resp.)
(c) simulate semaphores using an object with two synchronized methods

Summary

Classification of concurrency algorithms:
- wait-free, lock-free, locked
- next on the agenda: transactional

Wait-free algorithms:
- never block, always succeed, never deadlock, no starvation
- very limited in what they can do

Lock-free algorithms:
- never block, may fail
- never deadlock, may starve
- invariant may only span a few bytes (8 on Intel)

Locking algorithms:
- can guard arbitrary code
- can use several locks to enable more fine grained concurrency
- may deadlock
- semaphores are not re-entrant, monitors are
- use algorithm that is best fit
References

Concurrency: Transactions

Dr. Michael Petter
Winter term 2015

Abstraction and Concurrency

Two fundamental concepts to build larger software are:

- **abstraction**: an object storing certain data and providing certain functionality may be used without reference to its internals
- **composition**: several objects can be combined to a new object without interference
Abstraction and Concurrency

Two fundamental concepts to build larger software are:

- **abstraction**: an object storing certain data and providing certain functionality may be used without reference to its internals
- **composition**: several objects can be combined to a new object without interference

Both, abstraction and composition are closely related, since the ability to compose depends on the ability to abstract from details.

Consider an example:

- a linked list data structure exposes a fixed set of operations to modify the list structure, such as `PushLeft` and `ForAll`
- a set object may internally use the list object and expose a set of operations, including `PushLeft`

The `Insert` operation uses the `ForAll` operation to check if the element already exists and uses `PushLeft` if not.

Abstraction and Concurrency

Two fundamental concepts to build larger software are:

- **abstraction**: an object storing certain data and providing certain functionality may be used without reference to its internals
- **composition**: several objects can be combined to a new object without interference

Both, abstraction and composition are closely related, since the ability to compose depends on the ability to abstract from details.

Consider an example:

- a linked list data structure exposes a fixed set of operations to modify the list structure, such as `PushLeft` and `ForAll`
- a set object may internally use the list object and expose a set of operations, including `PushLeft`

The `Insert` operation uses the `ForAll` operation to check if the element already exists and uses `PushLeft` if not.

Wrapping the linked list in a mutex does not help to make the `set` thread-safe.

```c
// wrap the two calls in Insert in a mutex
// but other list operations can still be called // use the same mutex
```

Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic execution of the statements.

```c
atomic {
    // code
    if (cond) retry;
    atomic {
        // more code
    }
}
// code
```
Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic execution of the statements.

```java
atomic {
    // code
    if (cond) retry;
    atomic {
        // more code
    }
    // code
}
```

Execute code as transaction:
- execute the code of an atomic block
- nested atomic blocks act like a single atomic block
- check that it runs without conflicts due to accesses from another thread
- if another thread interferes through conflicting updates:
 - undo the computation done so far
 - re-start the transaction
- provide a retry keyword similar to the retry of monitors

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is detected when the TM system observes this, it is resolved when the TM system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:
- optimistic vs. pessimistic concurrency control:
 - pessimistic: detection/resolution when the conflict is about to occur
 - resolution here is usually delaying one transaction
 - can be implemented using locks: deadlock problem
 - optimistic: detection and resolution happen after a conflict occurs
 - resolution here must be aborting one transaction
 - need to repeat aborted transaction: livelock problem
- eager vs. lazy version management: how read and written data are managed during the transaction
 - eager: writes modify the memory and an undo-log is necessary if the transaction aborts
 - lazy: writes are stored in a redo-log and modifications are done on committing