Script generated by TTT

Title: Petter: Programmiersprachen (17.12.2014)
Date: Wed Dec 17 15:12:31 CET 2014

Duration: 35:32 min

Pages: 12

Extension Methods (C#)

Central Idea:
Uncouple method definitions from class bodies.

Purpose:

@ retrospectively add methods to complex types
~ external definition

@ especially provide definitions of inferface methods
~ poor man's multiple inheritance!

Syntax:
@ Declare astatic class with definitions of static methods
@ Explicitely declare first parameter as receiver with modifier this

© Import the carrier class into scope (if needed)
© Call extension method in infix form with emphasis on the receiver

Extension Methods

17127

Can we augment classical languages by traits?

Extension Methods

public class Person{

}

public int size = 160;
public bool hasKey() { return true;}

public interface Short {}
public interface Locked {}

public static class DoorExtensions {

}

P
public static void Main() {

ShortLockedDoor d = new ShortLockedDoor();
Console.WriteLine(d.canOpen(new Person()));
T
}

public static bool canOpen{this Locked leftHand, Person p){
return p.hasKey();

¥

public static bool canPass(this Short leftHand, Person p)f{
return p.size<160;

}

ublic class ShortLockedDoor : Locked,Short {

Extension Methods

16 /27

18/27

Extension Methods as Traits [Virtual Extension Methods (Java 8) T

e

Extension Methods ... but not traits Java 8 advances one step further: e
@ transparently extend arbitrary @ Interface declarations empty, mgeriace Doog { - N (L ttofarn L ed. Scpperc S
types externally thus kind of purposeless co-ean canipenirerson pJ; N phukal il
) . i .) boolean canPass(Person p);
@ provide quick relief for @ Flattening not implemented }
plagued programmers @ Static scope only interface Locked {
default boolean canOpen(Person p) { return p.hasKey(); 7
1
Static scope of extension methods causes unexpected errors: interface Short {
public interface Locked { default boolean canPass(Person p) { return p.size<160; }
|public bool canOpen(Person p) ;| }
} public class ShortLockedDoor implements|Short, Locked, Door| {
public static class DoorExtensions { }
public static bool can[]penl(this Locked leftHand, Person p){)
return p.hasKey(); Implementation & Precedence
}} . ..consistvs in addﬁng an jnterface Still, default methods do not
phase to invokevirtual's name overwrite methods from abstract

resolution classes when composed

T Vi Evension eods 20127

Traits in practice Extension Methods 19/27

Traits as General Composition Mechanism T[]

/N Central Idea
Separate class generation from hierarchy specification and functional
modelling
@ model hierarchical relations with interfaces So let’s do the Ianguage with real traits?!
© compose functionality with traits
© adapt functionality to interfaces and add state via glue code in classes

v

Simplified multiple Inheritance without adverse
effects

Trails in practice Virtual Extension Methods 21/ 27 | Tratsinpractice | Trails in Squeak 2227

Squeak

Smalltalk
Squeak is a smalltalk implementation, extended with a system for traits.

Syntax:
@ name: param and: param2
declares method name with paraml and param2
@® | identl ident2 |
declares Variables ident1 and ident2
@ ident := expr
assignment
@ object name:content
sends message name With content 10 object

line terminator
@ ~ expr
return statement

Traits in practice Traits in Squeak

Traits: So far so...

v good
@ Principles fully implemented
@ Concept has encouraged mainstream languages to adopt ideas

23/27

i

\ bad

@ One very unconventional graphical IDE for Squeak, afaik
@ ...and there is no separate compiler with command line mode!

—

25/27

Traits in Squeak T

Trait named: #TRStream uses: TPositionableStream
on: aCollection
self collection: aCollection.
self setToStart.
next
- self atEnd
ifTrue: [nil]
ifFalse: [self collection at: self nextPosition].
Trait named: #TSynch uses: {}
acquireLock
self semaphore wait.
releaselLock
self semaphore signal.

Trait named: #TSyncRStream uses: TSynch+(TRStream?(#readNext -> #next))
next
| read |
self acquirelock.
read := self readNext.

self releaselock.
read.

i npaeies Tt inSqweak 24127

Lessons learned m

Lessons Learned

@ Single inheritance, multiple Inheritance and Mixins leave room for
improvement for modularity in real world situations

@ Traits offer fine-grained control of composition of functionality

@ Native trait languages offer separation of composition of functionality from
specification of interfaces

@ Practically no language offers full traits in a usable manner

Traits in Squeak 26 /27

Further reading... UM

¥ Stéphane Ducasse, Oscar Nierstrasz, Nathanael Scharli, Roel Wuyts,
and Andrew P. Black.
Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems (TOPLAS),
2006.

® Brian Goetz.
Interface evolution via virtual extension methods.
JSR 335: Lambda Expressions for the Java Programming Language,
2011.

¥ Anders Hejlsberg, Scott Wiltamuth, and Peter Golde.
C# Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
ISBN 0321154916.

¥ Nathanael Schirli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black.
Traits: Composable units of behaviour.
European Conference on Object-Oriented Programming (ECOOP), 2003.

Further materials 27/27

