“So how do we lay out objects in heap anyway?”
Object layout

```c
class A {
    int a; int f(int);
};
class B : public A {
    int b; int g(int);
};
class X : public B {
    int c; int h(int);
};
...
C c;
c.g(42);
```

"So how do we include several parent objects?"

Object layout – virtual methods

```c
class A {
    int a; virtual int f(int);
    virtual int g(int);
    virtual int h(int);
};
class B : public A {
    int b; int g(int);
};
class C : public B {
    int c; int h(int);
};
...
C c;
c.g(42);
```

Multiple Base Classes

```c
class A {
    int a; int f(int);
};
class B {
    int b; int g(int);
};
class C : public A , public B {
    int c; int h(int);
};
...
C c;
c.g(42);
```

```c
% c = alloca %class.C
% 1 = getelementptr %c, i64 0, i32 0
% 2 = call i32 g(%class.B % 1, i32 42); g is statically known
```

```c
% c = alloca %class.C
% 1 = getelementptr %c, i64 0, i32 1
% 2 = call i32 g(%class.B % 1, i32 42); g is statically known
```
Multiple Base Classes

```java
class A {
    int a; int f(int);
};
class B {
    int b; int g(int);
};
class C : public A, public B {
    int c; int h(int);
};
...
C c;
c.g(42);
```

⚠️ `getelementptr` hides the \(\Delta B \) here!

Ambiguities

```java
class A { void f(int); }
class B { void f(int); }
class C : public A, public B {};
C* pc;
pc->f(42);
⚠️ Which method is called?
```

Solution I: Explicit qualification

```java
pc->A::f(42);
pc->B::f(42);
```

Solution II: Automatic resolution

Idea: The Compiler introduces a linear order on the nodes of the inheritance graph

Linearization

Inheritance Relation \(H \)
Defined by ancestors.

Multiplicity \(M \)
Defined by the order of multiple ancestors.

Principles

1. An inheritance mechanism (maps Object to sequence of ancestors) must follow the inheritance partial order \(H \).
2. The inheritance is a uniform mechanism, and its searches (→ total order) apply identical for all object properties (→fields/methods).
3. In any case the inheritance relation \(H \) excels the multiplicity \(M \).
4. When there is no contradiction between multiplicity \(M \) and inheritance \(H \), the inheritance search must follow the partial order \(H \cup M \).

Linearization algorithm candidates

Depth-First Search

```
A B C W
```

```
A B C
```

```
A B C W
```

```
A B C
```

```
A B C W
```

```
A B C
```

```
A B C W
```

```
A B C
```

```
A B C W
```

```
A B C
```

```
A B C W
```

```
A B C
```

```
A B C W
```

```
A B C
```
Linearization algorithm candidates

Depth-First Search
A B W C

⚠️ Principle 1 *inheritance* is violated.

Breadth-First Search
A B C W D

Linearization algorithm candidates

Reverse Postorder Rightmost DFS
A B F D C E G H W

✅ Linear extension of inheritance relation

Reverse Postorder Rightmost DFS
F E G D C B A

⚠️ But principle 4 *multiplicity* is violated!

Linearization algorithm candidates

Reverse Postorder Rightmost DFS
A B F D C E G H W

✅ Linear extension of inheritance relation

Reverse Postorder Rightmost DFS
A B F D C E G H W
Linearization Algorithm

Idea [Ducournau and Habib(1987)]

Successively perform Reverse Postorder Rightmost DFS and refine inheritance graph G with *contradiction arcs*.

The reservoir set of potential *contradiction arcs* CA is initially M, while the inheritance graph G starts from H.

```
do
  1. search ← RPDFS$_G$
  2. CA ← \{contradiction arcs of upper search\} $\cap$ M
  3. G ← G $\cup$ CA;
  while (CA $\neq$ $\emptyset$) $\land$ (search violates $H \cup M$)
```

Linearization algorithm candidates

Reverse Postorder Rightmost DFS

- A B F D C E G H W
- ✔ Linear extension of inheritance relation

Reverse Postorder Rightmost DFS

- A B C D F G E
- ❌ But principle 4 *multiplicity* is violated!

Linearization Algorithm

Idea [Ducournau and Habib(1987)]

Successively perform Reverse Postorder Rightmost DFS and refine inheritance graph G with *contradiction arcs*.

The reservoir set of potential *contradiction arcs* CA is initially M, while the inheritance graph G starts from H.

```
do
  1. search ← RPDFS$_G$
  2. CA ← \{contradiction arcs of upper search\} $\cap$ M
  3. G ← G $\cup$ CA;
  while (CA $\neq$ $\emptyset$) $\land$ (search violates $H \cup M$)
```

Linearization vs. explicit qualification

Linearization

- No switch/duplexer code necessary
- No explicit naming of qualifiers
- Unique super reference

Qualification

- More flexible, fine-grained
- Linearization choices may be awkward or unexpected

Languages with automatic linearization exist

- CLOS Common Lisp Object System
- Prerequisite for → Mixins
Linearization vs. explicit qualification

Linearization
- No switch/duplexer code necessary
- No explicit naming of qualifiers
- Unique `super` reference

Qualification
- More flexible, fine-grained
- Linearization choices may be awkward or unexpected

Languages with automatic linearization exist
- **CLOS** Common Lisp Object System
- Prerequisite for → Mixins