Script generated by TTT

Title: Seidl: Functional Programming and
Verification (30.11.2018)

Date: Fri Nov 30 08:34:40 CET 2018
Duration: 85:59 min

Pages: 16

3.1 Last Calls

A last call in the body e of a function is a call whose value provides the

value of e ...
]

let f x = x+5
let gy=1letz =7

in if y>5 then[f (-y)|

else z ¥ f y

The first call is last, the second? not.

—— From a last call, we need not return to the calling function.

—— The stack space of the calling function can immediately be
recycled !l!

186

3.2 Higher Order Functions

Consider the two functiod{‘

let f (a,b) = a+b+1;;
let gab = atb+1;;

At first sight, £ and g differ only in the syntax. But they also differ in
their types:

f;;
- : int * int -> int = <fun>

g5,

- : int —><int -> in> = <fun>

193

e Function £ has a single argument, namely, the pair (a,b). The
return value is given by a+b+1.

e Function g has the argument a of type int. The result of
application to a is again a function that, when applied to another
argument b, returns the result a+b+1 :

£ (3,5);;

- :int =9

let gl = g 3;;

val g1 : int -> int = <fun>
gl 553

- :int =9

194

Haskell B. @ 1900-1982

195

In honor of its inventor Haskell B. Curry, this principle is callecﬁ@uw

— g is called a higher order function, because its result is again a
function.

— The application of g to a single argument is called partial, because
the result takes another argument, before the body is evaluated.

The argument of a function can again be a function:

let apply f a b = £ (a,b);;
val apply : (Pa * b -> ¢) -> ’a -> ’b -> ’¢ = <fun>

196

Haskell B. Curry, 1900-1982

In honor of its inventor Haskell B. Curry, this principle is called Currying.

— g is called a higher order function, because its result is again a
function.

— The application of g to a single argument is called partial, because
the result takes another argument, before the body is evaluated.

The argument of a function can again be a function:

let apply f a b = £ (a,b);;
val apply : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>

196

3.3 Some List Functions

let rec map f = function

->1

let rec fold_left f a = function
[-> a
| x::xs -> fold_left f (f a x) xs

let rec fold_right f = function

[T ->funb->b
| x::xs -> fun b -> £ x (fold_right f xs b)

198

3.3 Some List Functions

let rec map f = function
->1

| x::xs -> £ x :: map f xs

let rec fold_left f a = function
[1 ->a
| x::xs ->|fold_left f (f a x) xs

let rec fold_right f = function
[l ->funb ->b
| x::xs -> fun b -> £ x (fold_right f xs b)

198

’Q{' we “nda € = kR €
(] = <«
[xuirs = Zad (Fxi?) XC

L Aed [e

3 st f €4 =
Lot e Eida € =hg €l
(] = <«
[xutrs = Zad (Fxi?) XC
Lol et U] e

Z é B AN «
¢= L6550 be
3.3 Some List Functions

Wt rec,map, f = function
) - JgnQ 6 —

| x:p

s > f x :: map f xs
let rec fold_left f a = function
[-> a

| x::xs -> fold_left f (f a x) xs

let rec fold_right f = function

ﬁ(g Qgi@\i :@7:4§: ifol%-igm £ xg 8D #
£ 10/)(\, (f b (if & = >>x>

Ulas e Vs 0

let rec find_opt f = function

[1 -> None “’3 ’\Q_ @’[\Q}\

| x::xs -> if f x then Some x
else find_opt f xs

Remarks

— These functions abstract from the behavior of the function f.
They specify the recursion according the list structure —
independently of the elements of the list.

— Therefore, such functions are sometimes called recursion schemes
or (list) functionals.

— List functionals are independent of the element type of the list.

That type must only be known to the function f.

— Functions which operate on equally structured data of various
type, are called polymorphic.

199

3.4 Polymorphic Functions

The Ocaml system infers the following types for the given functionals:

map : (’a -> ’b) -> ’a list -> b list

fold_left : (a -> ’b -> ’a) -> ’a -> ’b list -> ’a
fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
find_opt : (’a -> bool) -> ’a list -> ’a option

— ’aand ’b are type variables. They can be instantiated by any
type (but each occurrence with the same type).

200

— If a functional is applied to a function that is itself polymorphic,
the result may again be polymorphic:

let cons_r Xs X = X::XS;;

val cons_r : ’a list -> ’a -> ’a list = <fun>
let rev 1 = fold_left cons_r [] 1;;

val rev : ’a list -> ’a list = <fun>

rev [1;2;3];;

- : int list = [3; 2; 1]

rev [true;false;false];;

- : bool list = [false; false; true]

202

Some

let
let
let

val
val
val

of the Simplest Polymorphic Functions

compose f g x = f (g x)
twice £ x = £ (f x)
iter f g x = if g x

compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
twice : (Pa -> ’a) -> ’a -> ’a = <fun>
iter : (’a -> ’a) -> (’a -> bool) -> ’a -> ’a = <fun>

compose neg neg;;

: bool -> bool = <fun>

compose neg neg true;;

: bool = true;;

compose Char.chr plus2 65;;

: char = ’C’

203

