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3.1 Last Calls

A last call in the body e of a function is a call whose value provides the

value of e ...
]

let f x = x+5
let gy=1letz =7

in if y>5 then[f (-y)|

else z ¥ f y

The first call is last, the second? not.

—— From a last call, we need not return to the calling function.

—— The stack space of the calling function can immediately be
recycled !l!
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3.2  Higher Order Functions

Consider the two functiod{‘

let f (a,b) = a+b+1;;
let gab = atb+1;;

At first sight, £ and g differ only in the syntax. But they also differ in
their types:

# f;;
- : int * int -> int = <fun>

# g5,

- : int —><int -> in> = <fun>
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e  Function £ has a single argument, namely, the pair (a,b). The
return value is given by a+b+1.

e Function g has the argument a of type int. The result of
application to a is again a function that, when applied to another
argument b, returns the result a+b+1 :

# £ (3,5);;

- :int =9

# let gl = g 3;;

val g1 : int -> int = <fun>
# gl 553

- :int =9
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Haskell B. @ 1900-1982
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In honor of its inventor Haskell B. Curry, this principle is callecﬁ@uw

— g is called a higher order function, because its result is again a
function.

—  The application of g to a single argument is called partial, because
the result takes another argument, before the body is evaluated.

The argument of a function can again be a function:

# let apply f a b = £ (a,b);;
val apply : (Pa * b -> ¢) -> ’a -> ’b -> ’¢ = <fun>
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Haskell B. Curry, 1900-1982

In honor of its inventor Haskell B. Curry, this principle is called Currying.

— g is called a higher order function, because its result is again a
function.

—  The application of g to a single argument is called partial, because
the result takes another argument, before the body is evaluated.

The argument of a function can again be a function:

# let apply f a b = £ (a,b);;
val apply : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>
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3.3 Some List Functions

let rec map f = function

->1

let rec fold_left f a = function
[ -> a
| x::xs -> fold_left f (f a x) xs

let rec fold_right f = function

[T ->funb->b
| x::xs -> fun b -> £ x (fold_right f xs b)

198

3.3 Some List Functions

let rec map f = function
->1

| x::xs -> £ x :: map f xs

let rec fold_left f a = function
[1 ->a
| x::xs ->|fold_left f (f a x) xs

let rec fold_right f = function
[l ->funb ->b
| x::xs -> fun b -> £ x (fold_right f xs b)
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3.3 Some List Functions

Wt rec,map, f = function
) - JgnQ 6 —

| x:p

s > f x :: map f xs
let rec fold_left f a = function
[ -> a

| x::xs -> fold_left f (f a x) xs

let rec fold_right f = function

ﬁ( g Qgi@\i :@7:4§: ifol%-igm £ xg 8D #
£ 10/)(\, (f b (if & = >>x>
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let rec find_opt f = function

[1 -> None “’3 ’\Q_ @’[\Q}\

| x::xs -> if f x then Some x
else find_opt f xs

Remarks

—  These functions abstract from the behavior of the function f.
They specify the recursion according the list structure —
independently of the elements of the list.

—  Therefore, such functions are sometimes called recursion schemes
or (list) functionals.

—  List functionals are independent of the element type of the list.

That type must only be known to the function f.

—  Functions which operate on equally structured data of various
type, are called polymorphic.
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3.4 Polymorphic Functions

The Ocaml system infers the following types for the given functionals:

map : (’a -> ’b) -> ’a list -> b list

fold_left : (a -> ’b -> ’a) -> ’a -> ’b list -> ’a
fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
find_opt : (’a -> bool) -> ’a list -> ’a option

—  ’aand ’b are type variables. They can be instantiated by any
type (but each occurrence with the same type).
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— If a functional is applied to a function that is itself polymorphic,
the result may again be polymorphic:

# let cons_r Xs X = X::XS;;

val cons_r : ’a list -> ’a -> ’a list = <fun>
# let rev 1 = fold_left cons_r [] 1;;

val rev : ’a list -> ’a list = <fun>

# rev [1;2;3];;

- : int list = [3; 2; 1]

# rev [true;false;false];;

- : bool list = [false; false; true]
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Some

let
let
let

val
val
val

of the Simplest Polymorphic Functions

compose f g x = f (g x)
twice £ x = £ (f x)
iter f g x = if g x

compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
twice : (Pa -> ’a) -> ’a -> ’a = <fun>
iter : (’a -> ’a) -> (’a -> bool) -> ’a -> ’a = <fun>

# compose neg neg;;

: bool -> bool = <fun>

# compose neg neg true;;

: bool = true;;

# compose Char.chr plus2 65;;

: char = ’C’
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