Chapter 10

Amortized Complexity

Example

\(n \) increments of a binary counter starting with 0
Example

\(n \) increments of a binary counter starting with 0

- WCC of one increment? \(O(\log_2 n) \)
- WCC of \(n \) increments? \(O(n \cdot \log_2 n) \)
- \(O(n \cdot \log_2 n) \) is too pessimistic!
- Every second increment is cheap and compensates for the more expensive increments

WCC = worst case complexity
The problem

WCC of individual operations may lead to overestimation of WCC of sequences of operations

Amortized analysis

Idea:
Try to determine the average cost of each operation (in the worst case!)

Use cheap operations to pay for expensive ones

Method:
- Cheap operations pay extra (into a “bank account”), making them more expensive
Bank account = Potential

- The potential (“credit”) is implicitly “stored” in the data structure.
- Potential $\Phi :: \text{data-structure} \Rightarrow \text{non-neg. number}$ tells us how much credit is stored in a data structure
- Increase in potential = deposit to pay for later expensive operation
Bank account = Potential

- The potential ("credit") is implicitly "stored" in the data structure.
- Potential $\Phi :: \text{data-structure} \Rightarrow \text{non-neg. number}$ tells us how much credit is stored in a data structure.
- Increase in potential = deposit to pay for later expensive operation
- Decrease in potential = withdrawal to pay for expensive operation

Back to example: counter

Increment:
- Actual cost: 1 for each bit flip
- Bank transaction:
 - pay in 1 for final $0 \rightarrow 1$ flip
 - take out 1 for each $1 \rightarrow 0$ flip

\Rightarrow increment has amortized cost $2 = 1+1$
Back to example: counter

Increment:
- Actual cost: 1 for each bit flip
- Bank transaction:
 - pay in 1 for final 0 → 1 flip
 - take out 1 for each 1 → 0 flip
implies increment has amortized cost 2 = 1+1

Data structure

Given an implementation:

Increment:
- Actual cost: 1 for each bit flip
- Bank transaction:
 - pay in 1 for final 0 → 1 flip
 - take out 1 for each 1 → 0 flip
implies increment has amortized cost 2 = 1+1

Formalization via potential:
Φ counter = the number of 1's in counter

Formalization via potential:
Φ counter = the number of 1's in counter
Data structure

Given an implementation:

- Type τ
- Operation(s) $f :: \tau \Rightarrow \tau$

Data structure

Given an implementation:

- Type τ
- Operation(s) $f :: \tau \Rightarrow \tau$
 (may have additional parameters)

Data structure

Given an implementation:

- Type τ
- Operation(s) $f :: \tau \Rightarrow \tau$
 (may have additional parameters)
- Initial value: $\text{init} :: \tau$
 (function “empty”)

Needed for complexity analysis:

- Time/cost: $t \cdot f :: \tau \Rightarrow \text{num}$
 ($\text{num} =$ some numeric type)
Amortized and real cost

Sequence of operations: f_1, \ldots, f_n
Sequence of states:

$s_0 := \text{init}, s_1 := f_1 \ s_0,$

Amortized cost $:= \text{real cost} + \text{potential difference}$

$a_{i+1} := t_{f_{i+1}} \ s_i + \Phi s_{i+1} - \Phi s_i$

Amortized cost $:= \text{real cost} + \text{potential difference}$

$a_{i+1} := t_{f_{i+1}} \ s_i + \Phi s_{i+1} - \Phi s_i$

\implies

Sum of amortized costs \geq sum of real costs
Amortized and real cost

Sequence of operations: f_1, \ldots, f_n
Sequence of states:

$s_0 := init$, $s_1 := f_1 s_0$, \ldots, $s_n := f_n s_{n-1}$

Amortized cost := real cost + potential difference

$$a_{i+1} := t_{f_{i+1}} s_i + \Phi s_{i+1} - \Phi s_i$$

⇒ Sum of amortized costs ≥ sum of real costs

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_{f_i} s_{i-1} + \Phi s_i - \Phi s_{i-1})$$

Verification of amortized cost

For each operation f,
provide an upper bound for its amortized cost

$$a_f \in \tau \Rightarrow num$$

and prove

$$t_f s + \Phi(f s) - \Phi s \leq a_f s$$
Back to example: counter

\[incr :: \text{bool list} \Rightarrow \text{bool list} \]

\[
\begin{align*}
\text{incr} & \left[\right] = \left[\text{True} \right] \\
\text{incr} \left(\text{False} \# \text{bs} \right) & = \text{True} \# \text{bs} \\
\text{incr} \left(\text{True} \# \text{bs} \right) & = \text{False} \# \text{incr} \text{bs} \\
\text{init} & = \left[\right] \\
\Phi \text{ bs} & = \text{length (filter id bs)}
\end{align*}
\]

Lemma

\[\text{inc_r bs} + \Phi (\text{inc_r bs}) - \Phi \text{ bs} = 2 \]
Back to example: counter

\textit{incr} :: \textit{bool list} \Rightarrow \textit{bool list}
\textit{incr} [] = [\textit{True}]
\textit{incr} (\textit{False} \# \textit{bs}) = \textit{True} \# \textit{bs}
\textit{incr} (\textit{True} \# \textit{bs}) = \textit{False} \# \textit{incr} \textit{bs}

Proof obligation summary

- \(\Phi \ s \geq 0 \)
- \(\Phi \ \textit{init} = 0 \)
- For every operation \(f :: \tau \Rightarrow ... \Rightarrow \tau \):
 \(t_{\cdot f} s \bar{x} + \Phi(f s \bar{x}) - \Phi s \leq a_{\cdot f} s \bar{x} \)

If the data structure has an invariant \textit{invar}:
assume precondition \textit{invar} s

Proof obligation summary

- \(\Phi \ s \geq 0 \)
- \(\Phi \ \textit{init} = 0 \)
- For every operation \(f :: \tau \Rightarrow ... \Rightarrow \tau \):
 \(t_{\cdot f} s \bar{x} + \Phi(f s \bar{x}) - \Phi s \leq a_{\cdot f} s \bar{x} \)

If the data structure has an invariant \textit{invar}:
assume precondition \textit{invar} s

If \(f \) takes 2 arguments of type \(\tau \):
\(t_{\cdot f} s_1 s_2 \bar{x} + \Phi(f s_1 s_2 \bar{x}) - \Phi s_1 - \Phi s_2 \leq a_{\cdot f} s_1 s_2 \bar{x} \)
Amortized analysis unsuitable for real time applications:

Real running time for individual calls may be much worse than amortized time

Amortized analysis is only correct for single threaded uses of the data structure.

Single threaded = no value is used more than once
Warning: single threaded

Amortized analysis is only correct for single threaded uses of the data structure.

Single threaded = no value is used more than once

Otherwise:

\[
\begin{align*}
\text{let } & \text{ counter } = 0; \\
\text{bad } = & \text{ increment counter } 2^n - 1 \text{ times;} \\
_ = & \text{ incr bad;} \\
_ = & \text{ incr bad;} \\
_ = & \text{ incr bad;} \\
\vdots
\end{align*}
\]

Warning: observer functions

Observer function: does not modify data structure

\[\Rightarrow \text{ Potential difference } = 0\]

Warning: observer functions

Observer function: does not modify data structure

\[\Rightarrow \text{ Potential difference } = 0\]

\[\Rightarrow \text{ amortized cost } = \text{ real cost}\]
Warning: observer functions

Observer function: does not modify data structure
⇒ Potential difference = 0
⇒ amortized cost = real cost
⇒ Must analyze WCC of observer functions

This makes sense because

Observer functions do not consume their arguments!

Amortized Complexity

Motivation
Formalization
Simple Classical Examples
Amortized and real cost

Sequence of operations: \(f_1, \ldots, f_n \)
Sequence of states:

\[
\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i f_i s_{i-1} + \Phi s_i - \Phi s_{i-1}) \\
\geq \sum_{i=1}^{n} t_i f_i s_{i-1}
\]

Amortized and real cost

Sequence of operations: \(f_1, \ldots, f_n \)
Sequence of states:

\[
\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i f_i s_{i-1} + \Phi s_i - \Phi s_{i-1}) \\
\geq \sum_{i=1}^{n} t_i f_i s_{i-1}
\]
A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del_min have amortized logarithmic complexity.
A skew heap is a self-adjusting heap (priority queue)

Functions insert, merge and del_min have amortized logarithmic complexity.

Functions insert and del_min are defined via merge.

\[
\text{merge } h \langle \rangle = h \\
\text{merge } h \langle x \rangle = h
\]

Swap subtrees when descending:

\[
\text{merge } (\langle l_1, a_1, r_1 \rangle =: h_1) (\langle l_2, a_2, r_2 \rangle =: h_2) = \\
\begin{cases}
\text{merge } h_2 r_1, a_1, l_1 & \text{if } a_1 \leq a_2 \text{ then} \\
\text{else } \langle \text{merge } h_1 r_2, a_2, l_2 \rangle & \text{else}
\end{cases}
\]
Logarithmic amortized complexity

Theorem
\[
t_{\text{merge}} t_1 t_2 + \Phi (\text{merge } t_1 t_2) - \Phi t_1 - \Phi t_2
\leq 3 \cdot \log_2 (|t_1| + |t_2|) + 1
\]

Towards the proof

Main proof

\[
t_{\text{merge}} t_1 t_2 + \Phi (\text{merge } t_1 t_2) - \Phi t_1 - \Phi t_2
\leq l_{rh} (\text{merge } t_1 t_2) + r_{lh} t_1 + r_{lh} t_2 + 1
\]
\[
\leq \log_2 |\text{merge } t_1 t_2|_1 + \log_2 |t_1|_1 + \log_2 |t_2|_1 + 1
\]
\[
= \log_2 (|t_1|_1 + |t_2|_1 - 1) + \log_2 |t_1|_1 + \log_2 |t_2|_1 + 1
\]
\[
\leq \log_2 (|t_1|_1 + |t_2|_1) + 2 \cdot \log_2 (|t_1|_1 + |t_2|_1) + 2
\]
because \[
\log_2 x + \log_2 y \leq 2 \cdot \log_2 (x + y) \quad \text{if } x, y > 0
\]